Entropie v rovnovážné termodynamice

Slides:



Advertisements
Podobné prezentace
Kruhový děj s ideálním plynem
Advertisements

STRUKTURA A VLASTNOSTI plynného skupenství látek
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM.
16. Kruhový děj s ideálním plynem, 2. termodynamický zákon
Molekulová fyzika a termodynamika
Chemická termodynamika I
II. Věta termodynamická
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Vnitřní energie, práce, teplo
IDEÁLNÍ PLYN Stavová rovnice.
Hodnocení elektráren - úkolem je porovnat jednotlivé elektrárny mezi sebou E1 P pE1 P E1 vliv na ŽP E2 P pE2 P E2 vliv na ŽP.
Entropie v nerovnovážných soustavách
Julius Robert von Mayer
II. Zákon termodynamiky
Základy rovnovážné termodynamiky
FIFEI-12 Termika a termodynamika IV Doc. Miloš Steinhart, UPCE 06.
FI-16 Termika a termodynamika IV Hlavní body Termodynamika Tepelné stroje a jejich účinnost Carnotův cyklus 2. Věta termodynamická,
Chemická termodynamika II
Chemická termodynamika
Entropie David Sommer 3.IT. Historie Rudolf Clausius 0 "Die Energie der Welt ist konstant, die Entropie strebt einem Maximum zu“ 0 Entropie může.
ROVNOVÁŽNÝ STAV, VRATNÝ DĚJ, TEPELNÁ ROVNOVÁHA, TEPLOTA A JEJÍ MĚŘENÍ
Termodynamika Termodynamická soustava – druhy, složky, fáze, fázové pravidlo Termodynamický stav – rovnovážný, nerovnovážný; stabilní, metastabilní, nestabilní.
TERMODYNAMICKÁ TEPLOTA
Plyny.
Molekulová fyzika a termika
Fyzikální a analytická chemie
Termodynamika a chemická kinetika
Fyzikálně-chemické aspekty procesů v prostředí
PRVNÍ TERMODYNAMICKÝ ZÁKON.
I. Věta termodynamická ΔU = U2 – U1 = W + Q dU = dQ + dW
Termodynamika – principy, které vládnou přírodě JAMES WATT Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy.
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Šablona:III/2č. materiálu: VY_32_INOVACE_FYZ_370 Jméno autora:Mgr. Alena Krejčíková Třída/ročník:1. ročník Datum vytvoření: Výukový materiál.
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Chemie anorganických materiálů I.
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
KALORIMETRICKÁ ROVNICE
Izobarický a adiabatický děj
Co je to čas?? Šimon Zdvořák, Tomáš Gogár Čas je trik, kterým se příroda brání tomu, aby se vše stalo najednou. John A. Wheeler.
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM
FI-15 Termika a termodynamika III
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: Inovace a zkvalitnění výuky prostřednictvím.
Struktura a vlastnosti plynů
teplota? indikátor teploty teplota? „teplota“ vařící vody.
Termodynamika (kapitola 6.1.) Rozhoduje pouze počáteční a konečný stav Nezávisí na mechanismu změny Předpověď směru, samovolnosti a rozsahu reakcí Nepočítá.
Přednášky z lékařské biofyziky Masarykova univerzita v Brně – Biofyzikální centrum JAMES WATT Termodynamika I.
Termodynamika Základní pojmy: TeploQ (J) - forma energie Termodynamická teplotaT (K) 0K= -273,16°C - nejnižší možná teplota (ustane tepelný pohyb) EntropieS.
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
Joulův-Thomsonův jev volná adiabatická expanze  nevratný proces (vzroste entropie) ideální plyn: teplota se nezmění a bude platit: p1p1 V1V1 p 2 < p 1.
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
16. Kruhový děj s ideálním plynem, 2. termodynamický zákon
Základy rovnovážné termodynamiky
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Elektrárny 1 Přednáška č.2 Výpočet účinnosti TE
Inovace a rozšíření výuky zaměřené
Název školy: Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu: Moderní škola Registrační číslo projektu: CZ.1.07/1.5.00/
Statistická termodynamika Chemická rovnováha Reakční kinetika
Moderní poznatky ve fyzice Některé jevy moderní termodynamiky
ESZS Přednáška č.3 Stanovení účinnosti TE (TO) a maximální účinosti
Vytápění Teplo.
5. Děje v plynech a jejich využití v praxi
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Struktura a vlastnosti plynu
TERMODYNAMICKÁ TEPLOTA
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM.
PRVNÍ TERMODYNAMICKÝ ZÁKON.
ADIABATICKÝ DĚJ S IDEÁLNÍM PLYNEM.
STAVOVÉ ZMĚNY IDEÁLNÍHO PLYNU.
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
Elektrárny 1 Přednáška č.3
Transkript prezentace:

Entropie v rovnovážné termodynamice

„Zákon, že entropie stále roste – druhá věta termodynamiky – má, jak se domnívám, mezi zákony Přírody výsadní postavení. Pokud Vám někdo vytkne, že Vaše zamilovaná teorie vesmíru je v rozporu s Maxwellovými rovnicemi, tím hůř pro Maxwellovy rovnice. Zjistí-li se, že je v rozporu s pozorováním, dobrá, výzkumníci občas něco zpackají. Ale zjistí-li se, že Vaše teorie je v rozporu s druhou větou termodynamiky, nemáte naději. Nezbývá než se v hluboké pokoře sklonit.“ A. S. Eddington

Rovnovážný stav termodynamické soustavy Soustava, která je od určitého okamžiku v neměnných vnějších podmínkách, přejde po jisté době samovolně do rovnovážného stavu. Setrvává v něm, dokud zůstanou tyto podmínky zachovány.

izolovaná nádoba mikrostav, makrostav entropie: míra neuspořádanosti nejpravděpodobnější makrostav: maximální počet mikrostavů

Pravděpodobnost makrostavu: Počet mikrostavů:

Pravděpodobnost makrostavu:

Termodynamická pravděpodobnost a míra neuspořádanosti Ludwig Boltzmann (1844–1906) Boltzmannův princip (1877): Entropie soustavy je funkcí pravděpodobnosti stavu soustavy.

Entropie Rudolf Clausius (1822–1888) entrópos = vnitřní změna makroskopické hledisko: k definici změny entropie využívá termodynamické teploty soustavy a tepla, které soustava během daného děje získá nebo ztratí.

Formulace druhého termodynamického zákona Rudolf Clausius (1822–1888), 1850: Je nemožné cyklickým procesem přenášet teplo z chladnějšího tělesa na teplejší, aniž se přitom změní jisté množství práce na teplo.

William Thomson ( 1824–1907), od r. 1892 lord Kelvin 1851: Je nemožné cyklickým procesem odnímat jednomu tělesu teplo a měnit je v kladnou práci, aniž přitom přejde jisté množství tepla z tělesa teplejšího na chladnější.

Max Planck (1858–1947), 1930: Je nemožné sestrojit periodicky pracující stroj, který by trvale vykonával kladnou mechanickou práci pouze ochlazováním jednoho tělesa, aniž přitom dochází k jiným změnám v ostatních tělesech.

Určení celkové změny entropie soustavy při vratném izotermickém ději: expanze komprese

Entropie izolované termodynamické soustavy se při vratném ději nemění. Nevratné děje? Odhad změny entropie soustavy při nevratném ději:

Určení změny entropie soustavy při nevratném ději:

Formulace druhého termodynamického zákona pomocí entropie: Entropie izolované soustavy roste při ději nevratném a zůstává stálá při ději vratném. Entropie izolované soustavy nikdy neklesá. Platí tedy

Empirická entropie v izolované soustavě: stav B je nedosažitelný ze stavu A B je dosažitelný z A, ale ne naopak B je dosažitelný z A a naopak > <

Constantin Carathéodory (1873–1950), 1908: dosažitelnost stavů v okolí libovolného rovnovážného stavu izolovaného systému, teorie empirické teplotní stupnice, existence empirické entropie a analýza vlastností .

Od idealizace ke skutečným dějům nevratnost - spojitost se zavedením nové veličiny entropie, souvislost entropie a míry neuspořádanosti soustavy, podle změny entropie v soustavě lze určit směr nevratného děje.

Entropie kolem nás tepelné stroje chladničky tepelné pumpy Joulovo teplo v elektrických přístrojích biologické a chemické otevřené systémy

Shrnutí z rovnosti číselných hodnot entropie plyne vzájemná dosažitelnost stavů v izolované soustavě, změna entropie určuje směr přechodu mezi dvěma stavy soustavy: při nerovnosti může děj v  izolované soustavě samovolně proběhnout pouze směrem k vyšší hodnotě entropie.

Aplikace nerovnovážná termodynamika fyzika nízkých teplot chemie (katalytické reakce) biologie (disipativní struktury) kosmologie informatika ekonomie psychologie

Adiabatická demagnetizace jedna z nejstarších metod získávání velmi nízkých teplot v oblasti pod 1 K Peter Debye (1884–1966), William Giauque (1895–1982) návrh fyzikálního principu adiabatické demagnetizace (později stejný princip využit při jaderné demagnetizaci)

Termodynamické zákony podle Murphyho Ve “hře” nemůžete nikdy vyhrát. V nejlepším případě dosáhnete pouze nerozhodného výsledku. Nerozhodného výsledku můžete dosáhnout pouze při teplotě 0 K. Teploty 0 K nemůžete nikdy dosáhnout.