2 Výroba elektrické energie

Slides:



Advertisements
Podobné prezentace
Vodní elektrárny Marek Mik.
Advertisements

36. Střídavý proud v energetice
ELEKTRÁRNY.
Rozvodná elektrická síť
ELEKTRÁRNY Denisa Gabrišková 8.A.
Digitální učební materiál
Digitální učební materiál
Jaderný reaktor Aktivní zóna – část reaktoru, kde probíhá řetězová reakce. Jako palivo slouží tyče s uranovými tabletami Moderátor – slouží jako tzv. zpomalovač.
Jaderná energie Výroba paliv a energie.
Sluneční elektrárna.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Jaderná energie.
Výroba a rozvod elektrické energie
Název materiálu: OPAKOVÁNÍ 1.POLOLETÍ - OTÁZKY
JADERNÁ ELEKTRÁRNA.
Vypracovali: Pavla Korešová Tomáš Pech Tomáš Soták Jan Šembera
Popis a funkce elektrárny
Jedna ze dvou jaderných elektráren v ČR - Temelín
Elektrárny.
Vodní energie Holeček Václav, Mikšátko Honza, Dočekal Petr, Šebestová Kristýna, Valentová Kristýna.
Vodní Elektrárna.
Výroba elektrické energie
Tematický workshop pro studenty SPŠ stavební v Opavě
ZŠ Rajhrad Ing. Radek Pavela
JADERNÁ ELEKTRÁRNA.
Energetika.
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/ je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Výukový.
VODNÍ ENERGIE.
Uhlí Výroba paliv a energie.
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_10 Tematická.
Tato prezentace byla vytvořena
Synchronní stroje I. Konstrukce a princip.
Jaderné Elektrárny.
Elektrický generátor Elektrický generátor je elektrický stroj, sloužící k přeměně jiných druhů energie na energii elektrickou. Nejčastěji se jedná o rotační.
Jedna ze dvou jaderných elektráren v ČR - Temelín
Tepelná elektrárna.
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/
Typy jaderných reakcí.
Výroba elektrické energie
Vodní Elektrárny.
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorIng. Ivana Brhelová Název šablonyIII/2.
Výroba elektrické energie
Simulace provozu JE s reaktorem VVER 1000 Normální provoz i havarijní stavy Zpracovali: M. Kuna, P. Baxant, J. Fumfera.
ŠTĚPENÍ JADER URANU anebo O jaderném reaktoru PaedDr. Jozef Beňuška
Výroba elektrické energie
Dynamo, alternátor, elektromotor
Jak se trvale získává jaderná energie
Netradiční zdroje elektrické energie
Střídavé napětí a střídavý proud
Vodní elektrárny.
Alternativní Zdroje Energie Autoři: Jiří Preclík Pavel Kopáček Emil Pišta : VII. D třída: VII. D.
Vypracoval: Martin Foretník
Jaderná elektrárna.
Automatizační technika
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Výroba a přenos elektrické energie Číslo DUM: III/2/FY/2/2/17 Vzdělávací předmět: Fyzika Tematická oblast:
Autor – Vlastimil Knotek Závěrečná práce.  Elektrická energie je schopnost elektromagnetického pole konat elektrickou práci. Čím větší energii má elektromagnetické.
Jaderné reaktory Pavel Tvrdík, Oktáva Jaderný reaktor Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze kontrolovat.
Elektrárny Zbožíznalství 1. ročník Elektrárny - rozeznáváme: 1. tepelné elektrárny 2. vodní elektrárny 3. jaderné elektrárny.
Název školy: Základní škola Městec Králové Autor: Mgr.Jiří Macháček Název: VY_32_INOVACE_35_F9 Číslo projektu: CZ.1.07/1.4.00/ Téma: Jaderná elektrárna.
1 JE – jaderne elektrarny JE – Jaderné elektrárny 2 1 DDZ, rozdělení elektráren, Princip výroby elektřiny, 2 Objev elektronu, Historie JE.
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_192_Elektřina-výroba a rozvod AUTOR: Ing. Gavlas Miroslav.
Vodní elektrárny. Vypracovala: Veronika Prokešová, 15 let, třída 9.A a Jana Máčková, 15. let, třída 9.B ZŠ Chomutov, ak.Heyrovského Ak.Heyrovského 4539.
Název školy:Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu:Moderní škola Registrační číslo projektu:CZ.1.07/1.5.00/
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr
NÁZEV PROJEKTU: INVESTICE DO VZDĚLÁNÍ NESOU NEJVYŠŠÍ ÚROK
Jaderné reakce Při jaderných reakcích se mohou přeměňovat jádra jednoho nuklidu na jádra jiných nuklidů. Přitom zůstává elektrický náboj i počet nukleonů.
Název projektu: ZŠ Háj ve Slezsku – Modernizujeme školu
Elektřina VY_32_INOVACE_05-36 Ročník: IX. r. Vzdělávací oblast:
Druhy elektráren Výroba a přenos elektrické energie Název školy
NÁZEV PROJEKTU: INVESTICE DO VZDĚLÁNÍ NESOU NEJVYŠŠÍ ÚROK
Transkript prezentace:

2 Výroba elektrické energie 2.1 Elektrárny

dynamo mění mechanickou energii na elektrickou energii vyrábí stejnosměrný elektrický proud a napětí činnost založena na elektromagnetické indukci

zdrojem střídavého proudu a napětí, které má vyrábět s frekvencí 50 Hz alternátor mění energii mechanickou v energii elektrickou při využití točivého magnetického pole zdrojem střídavého proudu a napětí, které má vyrábět s frekvencí 50 Hz synchronní - obě točivá magnetická pole se otáčejí se stejnými otáčkami asynchronní - obě točivá magnetická pole se neotáčejí se stejnými otáčkami

transformátor slouží k přeměně elektrické energie jednoho napětí na elektrickou energii napětí jiného (vyššího nebo nižšího) při stejném kmitočtu

Význam a výhody výroby elektrické energie energie ve formě elektrického proudu a elektrického napětí nejužívanější sekundární energie podstatou je tok volných elektronů při vodivém spojení míst s rozdílným elektrickým potenciálem výhody nevýhody čistota univerzálnost možnost přenosu na dálku snadný rozvod vázanost výroby na spotřebu nemožnost skladování předpokládaná spotřeba v ČR denní spotřeba v ČR

Druhy elektráren: Elektrická energie se vyrábí v elektrárnách Tepelné elektrárny - využívají tuhých a kapalných paliv Jaderné elektrárny - využívají jaderných přeměn Vodní elektrárny - využívají pohybovou energii vody Větrné elektrárny - využívají pohybu vzduchu – vítr Sluneční elektrárna - využívají energie slunce Geotermální elektrárny - využívají teplo z nitra země Slapové elektrárny - využívají energie přílivu a odlivu                                 

Nejvíce elekrické energie se vyrobí v: Tepelných elektrárnách - 70 % Jaderných elektrárnách - 25 % Vodních elektrárnách - 5 % V tepelných a jaderných elektrárnách se převádí kinetická energie páry na mechanickou pomocí turbíny, k přeměně mechanické energie na elektrickou se používají synchronní alternátory (turboalternátory), které mají 3000 otáček za minutu. Pro chlazení u malých výkonů se používá vodík a pro velké výkony se používá voda. Vodní elektrárny využívají hydroalternátory. Turbíny (Francisova, Kaplanova) pro malé otáčky mají 100 otáček za minutu, proto musíme zvětšit počet pólových dvojic, abychom dosáhli frekvence 50 Hz. Peltonova turbína, je konstruována na vyšší otáčky, asi 300 otáček za minutu a tyto turbíny jsou horizontální. Vertikální jsou turbíny Kaplanova a Francisova.

1 – pásový dopravník 2 - zásobník uhlí 3 - mlecí zařízení 4 - úložiště popílku 5 – kotel 6 – hořáky 7 – parní buben Tepelná elektrárna 8 – přehřívač páry 9 – napájecí čerpadlo 10 – turbína 11 – elektrický generátor 12 – chladicí věž 13 – kondenzátor 14 – komín 15 – elektrostatický odlučovač popílku 16 – chladicí voda 17 – čerpadlo 18 – technologická voda spalavovací 19 – ventilátor 20 – dýmový ventilátor Kotel ohřívá vodu na vysokotlakou páru, která dále pokračuje do turbíny, kde je pohybová (tlaková) energie páry přeměněna na mechanickou. Mechanická energie se v synchronním generátoru přemění v elektrickou energii. Pára od turbíny přechází do kondenzátoru, kde se mění na vodu a dále je tlačena oběhovým čerpadlem do ohřívače a přes napájecí čerpadlo dále do kotle. Chladící voda je tlačena chladícím čerpadlem od chladící věže do kondenzátoru, kde se odebere teplo a vrací se zpět. Většina elektráren u nás jsou kondenzační, vyskytují se i teplárny, mají větší účinnost, jejich výkon však závisí na množství odebraného tepla (městské aglomerace)

uhelná elektrárna

parní turbína přeměna tepelné (vnitřní) a (nebo) kinetické energie pracovní látky ( páry ) na energii mechanickou (rotace hřídele) je roztáčena pracovní látkou proudící přes lopatky turbíny umístěna na společné hřídeli s elektrickým generátorem - dohromady tvoří tzv. turbogenerátor.

turbogenerátor chladicí věž

jaderná elektrárna 1 – jaderný reaktor 2 – regulační kazety 3 – jaderné palivo 4 – štěpná reakce 5 – kompenzátor objemu 6 – sprchy kompenzátoru objemu 7 – barbotážní nádrž 8 – parogenerátor 9 – horká část cirkulační slučky primárního okruhu 10 – studená část cirkulační slučky primárního okruhu 11 – hlavní cirkulační čerpadlo 12 – hlavní uzavírací armatura 13 – hlavní parní potrubí 14 – vysokotlaká regulace 15 – hlavní napájecí potrubí 16 – napájecí zařízení 17 – separátor a přehřívač páry 18 – turbína 19 – kondenzátor 20 – nízkotlaká regenerace 21 – kondenzační čerpadlo 1.stupně 22 – kondenzační čerpadlo 1.stupně 23 – elektrický generátor 24 – transformátor 25 – chladicí věž 26 – čerpadlo chladicí vody V reaktoru dochází ke štěpné reakci. Uvolňují se neutrony, je třeba regulovat jejich množství a rychlost, to se provádí pomocí regulačních tyčí (bor, kadmium) nebo pomocí palivových článků, které se dají zasouvat a vysouvat z aktivní zóny.

Jaderná elektrárna Temelín palivo oxid uraničitý směs oxidů uranu a plutonia plutonium plutonium uran Jaderná elektrárna Temelín

jaderný reaktor

vodní elektrárna 1 – přívodní kanál 2 - česle 3 – vzdouvací zařízení - hráze 4 – vtoková hradidla 5 – tlakový přivaděč 6 – montážní jeřáb 7 – generátor 8 – rotor 9 – hřídel 10 – vodní turbína 11 – sací roura 12 – odpadní kanál Přeměňuje kinetickou energii vody na mechanickou energii v turbíně, dále přes generátor na energii elektrickou. Druhy: Průtočná - Neuchovává vodu, její výkon závisí na okamžitém průtoku vody v řece Akumulační - Mají prostor pro uchování vody (přehrady) Přečerpávací - Mají 2 nádrže (horní a spodní), neboť elektřina je v různý čas různé drahá., proto se voda v noci čerpá do horní nádrže a ve špičky (přes den) se voda pouští do dolní nádrže (výroba).

vodní elektrárna výhody nevýhody neznečišťují ovzduší, nedevastují krajinu a povrchové či podzemní vody těžbou a dopravou paliv a surovin, jsou bezodpadové, nezávislé na dovozu surovin a vysoce bezpečné vyžadují minimální obsluhu i údržbu a lze je ovládat na dálku mohou startovat během několika sekund - špičkový zdroj k pokrytí okamžitých nároků na výrobu elektrické energie značná cena a čas výstavby nutnost zatopení velkého území závislost na stabilním průtoku vody Štěchovice Dlouhé Stráně

Vodní turbíny Francisova turbína

Kaplanova turbína

Peltonova turbína