Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Konstrukce trojúhelníku 5. ročník
Advertisements

Užití poměru (graficky)
Užití poměru (graficky)
Konstrukce lichoběžníku
Konstrukce trojúhelníku
Konstrukce trojúhelníků
Užití Thaletovy kružnice
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Základní konstrukce Rovnoběžky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Trojúhelník Vnitřní a vnější úhly v trojúhelníku Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR.
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Množina bodů dané vlastnosti
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Užití Thaletovy kružnice
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Známe-li délku úhlopříčky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku Známe-li všechny 3 jeho strany. Konstrukce podle věty sss (strana, strana, strana)
Konstrukce trojúhelníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce rovnoběžníku
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku Známe-li jednu stranu a dva úhly k ní přilehlé. Konstrukce podle věty usu (úhel, strana, úhel).

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník a jeho vlastnosti Trojúhelník je rovinný geometrický útvar sestávající ze tří stran, tří vrcholů a tří vnitřních úhlů. Zopakujeme si základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník - označování Pozor při značení vrcholů a stran trojúhelníku. Strana a proti vrcholu A, strana b proti vrcholu B, strana c proti vrcholu C. Popis vrcholů začínáme obvykle v levém dolním rohu, ale vždy popisujeme vrcholy ve směru proti pohybu hodinových ručiček.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník – součet vnitřních úhlů Součet vnitřních úhlů trojúhelníku je vždy 180°. 37° 73° 70° ____ 180°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku Z jakých částí se skládá naše činnost prováděná před, během a po konstrukci? 1. Je dobré zjistit, pokud to jde už ze zadání konstrukce, zda trojúhelník lze vůbec sestrojit, abychom zbytečně neztráceli čas. Jak? Např. pomocí trojúhelníkové nerovnosti, velikosti úhlů apod. 2. Načrtnout si obrázek, v němž si vyznačíme zadané údaje. Udělat si náčrt konstruované situace. 3. Rozebrat si postup, podle kterého budeme trojúhelník rýsovat. To znamená určit si, které znalosti nám při konstrukci trojúhelníku pomohou a jak. Např. vlastnosti trojúhelníku a jiných známých geometrických útvarů nebo množiny bodů dané vlastnosti. 4. Zapsat postup konstrukce, stanovený na základě provedeného rozboru. 5. Podle zapsaného postupu uskutečnit konstrukci a narýsovat zadaný trojúhelník. 6. Zapsat počet všech možných řešení zadané úlohy.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Náčrt: A nyní již přikročíme ke konstrukci. Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°,  = 60°, c = 8 cm. c = 8 cm První krok konstrukce, tj. určení, zda lze trojúhelník o zadaných hodnotách vůbec sestrojit, spočívá v tomto případě v ověření toho, zda součet zadaných úhlů je menší než součet všech tří vnitřních úhlů trojúhelníku, tzn. 180°.  = 40°  +  = 40°+60°= 100° 100°< 180°  = 60°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°,  = 60°, c = 8 cm. Rozbor konstrukce K tomu, abychom sestrojili trojúhelník, potřebujeme mít zadány 3 údaje. Tak, jak je tomu v našem případě, kdy známe jednu stranu a dva úhly k ní přilehlé. Tyto tři zadané údaje se pak zpravidla využívají v prvních třech krocích postupu konstrukce. Čím při rýsování začneme? c = 8 cm  = 40°  = 60° Při konstrukcích trojúhelníků začínáme většinou (je-li zadána) stranou, a to dolní vodorovně umístěnou stranou.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°,  = 60°, c = 8 cm. Rozbor konstrukce Dále budeme hledat bod C. Co o něm víme? Víme, že leží na rameni úhlu  o velikosti 40°. Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech takových bodů? Je to polopřímka AY, tj. rameno úhlu  = 40°. c = 8 cm  = 40° C1C1 C2C2 C3C3 C4C4 C5C5 Y A

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rozbor konstrukce Co dále o bodu C víme? Víme, že leží i na rameni úhlu  o velikosti 60°. Množinou bodů ležících na rameni úhlu  o velikosti 60°je polopřímka AZ, tj. rameno úhlu  = 60°. c = 8 cm  = 40° Y A  = 60° Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°,  = 60°, c = 8 cm. Z B

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°,  = 60°, c = 8 cm. Rozbor konstrukce c = 8 cm  = 40° Y A  = 60° Z Zapisujeme: C   AY   BZ Kde se tedy nachází vrchol C trojúhelníku? Leží v průsečíku polopřímky AY a polopřímky BZ, tzn. množiny všech bodů, které leží na rameni úhlu  o velikosti 40°, a množiny všech bodů, které leží na rameni úhlu  o velikosti 60°. Jako 2. a 3. krok konstrukce tedy narýsujeme výše uváděné polopřímky. B C

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. AB;  AB  = c = 8 cm Postup a konstrukce: 2.  ;  =  YAB  = 40°;  AY 4. C; C   AY   BZ 5. Trojúhelník ABC 3.  ;  =  ABZ  = 60°;  BZ p A B C Y Z

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C) Konstrukci proměříme, zda odpovídá zadání, a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 1 Sestrojte trojúhelník ABC, jestliže: c = 35 mm,  = 120°,  = 45°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 2 Sestrojte trojúhelník ABC, jestliže: |BC| = 9 cm,  = 35°,  = 55°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 3 Sestrojte trojúhelník OPQ, jestliže: |  QOP| = 30°, |  OPQ| = 115°, q = 7 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku podle věty usu Otevřete si na závěr ještě následující odkaz. Můžete myší měnit polohu bodů A, B a sklon polopřímek AX a BY (tzn. velikost úhlů) na uvedené konstrukci. Sledujte, kdy se barva polopřímek změní v zelenou, tzn. kdy nelze trojúhelník sestrojit. Dokážete odpovědět, kdy a proč to je? htm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku podle věty usu Tak co jste zjistili? Kdy se barva polopřímek mění v zelenou? Ano správně. Je to ve chvíli, kdy součet dvou zadaných úhlů dosáhne velikosti 180°. To znamená ve chvíli, kdy by mám na třetí úhel již nezbýval ani „stupeň“ (vzhledem k tomu, že 180° je součet všech tří úhlů jakéhokoliv trojúhelníku).

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Tak přesnou ruku při rýsování!