VNĚJŠÍ PAMĚTI.

Slides:



Advertisements
Podobné prezentace
Pevný disk – logická struktura
Advertisements

Pevné disky Štěpán Šípal.
Soubory a adresáře Soubor Adresář Kořenový adresář Stromová struktura
Obecně o operačních systémech
Pevné disky a jejich organizace v rámci MS
Hard-disk JAK SE DNES POUŽÍVÁ Andreas Tatka 7.A
PEVNÝ DISK POČÍTAČE + Magnetická paměťová zařízení.
Prezentace na téma : Harddisk
PEVNÝ DISK POČÍTAČE.
Pevné disky Kateřina Trčková 4.I.
Pevné disky-rozhraní.
Základní hardware počítače
Tato prezentace byla vytvořena
Tato prezentace byla vytvořena
Hardware- počítačové komponenty
Identifikátor materiálu: EU
Souborové systémy.
Výpočetní technika I Souborové systémy.
Informatika 1_6 6. Týden 11. A 12. hodina.
Diskový oddíl Souborový systém RAID 9/2012.
Informační a komunikační technologie
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Vnější paměť Ukládání dat pouze do operační paměti by při práci s počítačem nestačilo. Pro uchování vytvořených dat mají počítače ještě další, tzv. diskové.
Počítače X - HDD Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí.
DBI007: Fyzické nosiče souborů RNDr. Michal Žemlička.
Disky Martin Klejch 3.B.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUM VY_32_INOVACE_02A15 Autor Ing. Jiří Kalousek Období vytvoření duben 2014.
Hanuš HOLZER 2 EPi ARCHITEKTURA PC.
Druhy počítačů Osobní počítače Pracovní stanice Superpočítače
Prezentace na téma : Harddisk Tvůrce : Micinaua Swarzkopf (Michal Holata) Dne :
Identifikátor materiálu: EU
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Registrační číslo projektu: CZ.1.07/1.5.00/ Jazyk: čestina
David Klíma- 1 - Opáčko Jaké jsou typy pamětí? Co je to RAM, kde jí najdu? Co je paměť cache? Které paměťi se používají v současných základních deskách.
Hardware 4 verze 2.6.
Základní pojmy a části počítače Data (informace) se v počítači ukládají v pojmenovaných celcích, které se nazývají soubory. Soubory jsou dvou druhů: Programy.
Harddisk neboli Pevný disk Disk, který můžeme vidět. Jeho součástí je několik logických disků. Většina dat uživatelů PC je uložena na pevném disku. Jsou.
Optická média.
Architektura počítače
Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou I NFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Ing. Jan Roubíček.
Pevný disk (HDD - Hard Disk Drive)
Systém souborů. Množina souborů různých typů – Data – Spustitelné programy – Konfigurační a pomocné informace – I/O zařízení Způsob organizace množiny.
Systém souborů. Množina souborů různých typů – Data – Spustitelné programy – Konfigurační a pomocné informace – I/O zařízení Způsob organizace množiny.
Paměti poč í tače Vnitřní paměti Pevný disk Autorem materi á lu a v š ech jeho č á st í, nen í -li uvedeno jinak, je Lenka Čižm á rov á. Dostupn é z Metodick.
Prioritní osa: 1 − Počáteční vzdělávání Oblast podpory: 1.4 − Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/
Diskový oddíl. Diskové oddíly (partition) slouží k rozdělení fyzického disku na logické oddíly, se kterými je možné nezávisle manipulovat jeden disk se.
1 Pevný disk velkokapacitní nevýměnná disková paměť tvořen několika kovovými kotouči, na nichž je nanesena vrstva magnetického materiálu kotouče jsou umístěny.
Uvedení autoři, není-li uvedeno jinak, jsou autory tohoto výukového materiálu a všech jeho částí. Tento projekt je spolufinancován ESF a státním rozpočtem.
Číslo projektu školy CZ.1.07/1.5.00/ Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo materiáluVY_32_INOVACE_ICT_I_S1_05.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín VY_32_INOVACE_ICT_04 ORGANIZACE DAT V PC Zpracovala: Mgr. Květoslava Štikovcová Číslo.
P EVNÝ DISK Tereza Biskupová. * zkratka HDD, anglicky H ard D isk D rive *Harddisk je hlavní záznamové medium uvnitř počítače *Jsou na něm uložena všechna.
UNIX Systém souborů © Milan Keršláger
Stránkování MATĚJ JURIČIČ 2015/2016 EP1 SPŠ A VOŠ JANA PALACHA KLADNO.
Paměti PC HDD, CD/DVD, USB Flash RAM a ROM Vnější paměť Disková paměť
SOFTWARE Operační systémy.
Bezpečnostní technologie I
Název školy Střední zdravotnická škola a Vyšší odborná škola zdravotnická Nymburk, Soudní 20 IČO Číslo projektu CZ.1.07/1.5.00/ Název projektu.
Vnější paměti počítače
Systémové oblasti disku
Financováno z ESF a státního rozpočtu ČR.
Vlastnosti souborů Jaroslava Černá.
Vnitřek skříně počítače
Pevný disk – fyzická struktura
Souborové systémy 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
SOUBOR Souborový systém (anglicky file system) je v informatice označení pro způsob organizace dat ve formě souborů (a většinou i adresářů) tak, aby k.
Segmentace Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
Správa disků
04 – PEVNÉ DISKY RADOMÍR RYBÁK CO JE TO PEVNÝ DISK (HARD DISK DRIVE) Pevný disk (Hard disk drive, HDD) je zařízení, které slouží k trvalému uchování.
Systém souborů 1.
Souborové systémy 1 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
Transkript prezentace:

VNĚJŠÍ PAMĚTI

PEVNÉ DISKY (HARD DISK) VĚTŠINA PC MA 2 DISKOVÉ PAMĚTI : PEVNÝ DISK A DISKETOVOU MECHANIKU. PO VYPNUTÍ POČÍTAČE NEJSOU ZTRACENA DATA V TĚCHTO PAMĚTECH. OBĚ PAMĚTI PRACUJÍ NA MAGNETICKÉM PRINCIPU A MAJÍ NĚKOLIK ČÁSTÍ: 1.MÉDIUM NA NĚMŽ JSOU ULOŽENA DATA 2.MAG.HLAVY PRO ZÁPIS A ČTENÍ DAT 3.MECHANIKU POHYBUJÍCÍ HLAVAMI 4.MOTOREK TOČÍCÍ DISKEM 5.ŘADIČ 6.ROZHRANÍ

FYZICKÁ STRUKTURA PEVNÉHO DISKU

R W PLOTNY PEVNÉHO DISKU (TUHÉ KOTOUČE) R W MAGNETICKÉ HLAVY MAGNETICKÉ HLAVY SE U HDD SE VZNÁŠÍ NAD KOTOUČI (0,3 – 0,6 MIKRONU)

PODSYSTÉM PEVNÉHO DISKU

FYZICKÁ STRUKTURA DISKŮ stopy 1 2 3 POVRCH DISKU JE ROZDĚLEN NA STOPY (SOUSTŘEDĚNÉ KRUŽNICE). KAŽDÁ STOPA JE NAVÍC PŘÍČNĚ ROZDĚLENA NA SEKTORY sektor TOTO USPOŘÁDÁNÍ NAZÝVÁME FYZICKOU ORGANIZACÍ DAT.

FYZICKÉ FORMÁTOVÁNÍ (LOW FORMAT) PROCES, KTERÝM SE DISK MAGNETICKY DĚLÍ, SE JMENUJE FYZICKÉ FORMÁTOVÁNÍ. ŘADIČ ROZDĚLÍ DISK NA STOPY A SEKTORY A TY OČÍSLUJE. ŘADIČ UMÍSTÍ NA ZAČÁTEK KAŽDÉ STOPY A KAŽDÉHO SEKTORU MAGNETICKOU ZNAČKU (IDENTIFIKÁTOR). TENTO DRUH FORMÁTOVÁNÍ PROVÁDÍ VÝHRADNĚ VÝROBCE PEVNÉHO DISKU A UŽIVATEL BY SE O NĚJ NEMĚL NIKDY POKOUŠET.

HLAVY A CYLINDRY MAGNETICKÉ HLAVY ZAPISUJÍ A ČTOU DATA. NAD KAŽDÝM POVRCHEM LÉTÁ JEDNA HLAVA . MÁ-LI PEVNÝ DISK 5 KOTOUČŮ, MŮŽE MÍT AŽ 10 HLAV (KAŽDÝ KOTOUČ MÁ 2 POVRCHY). HLAV VŠAK MŮŽE BÝT I MÉNĚ, PROTOŽE KRAJNÍ KOTOUČE NEMUSÍ MÍT NUTNĚ POVRCHY Z OBOU STRAN. VŠECHNY HLAVY JSOU UMÍSTĚNY NA SPOLEČNÉM RAMENI. DÍKY SPOLEČNÉMU RAMENI SE TEDY HLAVY VŽDY VZNÁŠEJÍ NAD STEJNOU STOPOU VŠECH POVRCHŮ. STEJNÝM STOPÁM NA RŮZNÝCH POVRŠÍCH SE ŘÍKÁ CYLINDR, ŘIDČEJI VÁLEC.

PRÁCE MECHANIKY HLAV JE ZALOŽENA NA DVOU PRINCIPECH KROKOVÝ MOTOREK STARŠÍ, LEVNĚJŠÍ A MÉNĚ SPOLEHLIVÝ. JEDNO POOTOČENÍ MOTORKU ZNAMENÁ JEDEN PŘÍČNÝ KROK HLAVY ( POSUN O JEDNU STOPU). VYSTAVOVACÍ CÍVKA (VOICE COIL) PRŮCHOD PROUDU CÍVKOU ZPŮSOBÍ VYCHÝLENÍ CÍVKY ÚMĚRNÉ VELIKOSTI PROUDU. JE ZDE VYUŽITO ZPĚTNÉ VAZBY – HLAVIČKA ČTE SVOU POLOHU Z DISKU (KAŽDÁ STOPA A SEKTOR MAJÍ SVÉ ČÍSLO) A NA ZÁKLADĚ TÉTO INFORMACE ŘÍDÍCÍ ELEKTRONIKA PŘIDÁ NEBO UBERE PROUD POTŘEBNÝ K VYCHÝLENÍ. VOICE COIL JE SAMOPARKOVACÍ.

PARAMETRY PEVNÝCH DISKŮ TEPLOTNÍ KALIBRACE TCAL (THERMAL CALIBRATION) U VELKOKAPACITNÍCH DISKŮ S VELKOU HUSTOTOU STOP JE NUTNÉ UMÍSTIT HLAVY NAD STOPY S VELKOU PŘESNOSTÍ. BĚHEM PRÁCE SE VŠAK DISK OHŘEJE A VYSTAVOVÁNÍ HLAVIČEK BY VLIVEM TEPLOTNÍCH DILETACÍ NEBYLO PŘESNÉ. PROTO DISK PRAVIDELNĚ KONTROLUJE POLOHU HLAVIČKY NAD STOPOU A PROVÁDÍ PŘÍPADNÉ KOREKCE JEJÍ POLOHY. PŘÍSTUPOVÁ DOBA (ACCESS TIME) VYJADŘUJE RYCHLOST, S NÍŽ DISK VYHLEDÁVÁ DATA. JE SOUČTEM DVOU ČASŮ: DOBY VYSTAVENÍ A DOBY ČEKÁNÍ. JEJÍ HODNOTA SE POHYBUJE POD 10ms. DOBA VYSTAVENÍ (SEEK TIME) JE ČASEM NUTNÝM K POHYBU HLAV NAD URČITOU STOPU. HLAVY VĚTŠINOU „PŘELÉTÁVAJÍ“ POUZE NĚKOLIK STOP (MÁLOKDY CELÝ DISK), A TAK JE DOBA VYSTAVENÍ DEFINOVÁNA JAKO JEDNA TŘETINA ČASU POTŘEBNÉHO PRO POHYB PŘES CELÝ DISK (CCA 2-4ms).

PARAMETRY PEVNÝCH DISKŮ DOBA ČEKÁNÍ (ROTARY LATENCY PERIOD) I KDYŽ HLAVA DOLETÍ NAD SPRÁVNOU STOPU , NEMŮŽE JEŠTĚ ZAČÍT SE ČTENÍM. MUSÍ TOTIŽ POČKAT, AŽ SE POD NÍ DOTOČÍ TEN SEKTOR, V NĚMŽ SE MÁ SE ČTENÍM DAT ZAČÍT. DOBA ČEKÁNÍ ZÁLEŽÍ NA NÁHODĚ, ALE JAKO TECHNICKÁ HODNOTA SE UVAŽUJE ½ OTÁČKY DISKU. CESTA KE SNÍŽENÍ DOBY ČEKÁNÍ JE ZVÝŠENÍ OTÁČEK DISKU ( MAX.SOUČASNÉ OTÁČKY 10 000 – 15 000 OT/MIN). PAMĚŤ CACHE STEJNĚ JAKO MIKROPROCESORY POUŽÍVAJÍ I PEVNÉ DISKY VROVNÁVACÍ PAMĚŤ. SOUČASNÉ DISKY PRACUJÍ S VYROVNÁVACÍ PAMĚTÍ 256 kB – 4MB. JE REALIZOVÁNA JAKO PAMĚŤ DRAM. KAPACITA DISKU V SOUČASNOSTI SE POHYBUJE HRANICE NABÍZENÝCH DISKŮ KOLEM 80 GB.

ZÁSADY PRÁCE S PEVNÝM DISKEM CHRÁNIT JEJ PŘED OTŘESY NEJVÍCE SE POVRCH DISKU OPOTŘEBOVÁVÁ PŘI ZAPÍNÁNÍ A VYPÍNÁNÍ POČÍTAČE PEVNÝ DISK MŮŽE POŠKODIT TAKÉ PRUDKÁ ZMĚNA TEPLOT NUTNÉ PRAVIDELNÉ ZÁLOHOVÁNÍ DŮLEŽITÝCH SOUBORŮ

ŘADIČE PEVNÝCH DISKŮ ZODPOVÍDAJÍ ZA SPRÁVNÉ VYSTAVENÍ HLAV. ORGANIZUJÍ VLASTNÍ ZÁPIS A ČTENÍ DAT PROSTŘEDNICTVÍM KÓDOVÁNÍ NEBO DEKÓDOVÁNÍ. VE SPOLUPRÁCI SE SBĚRNICÍ ZAJIŠŤUJÍ PŘENOS DAT MEZI DISKEM A MIKROPROCESOREM. EIDE (ENHANCED IDE) VZNIKLO INOVACÍ PŘEDEŠLÉHO STANDARDU IDE (INTEGRATED DRIVE ELECTRONICS). EIDE JE NAVRŽENO PRO SBĚRNICI ISA, PRO NÍŽ SE VŽILO I OZNAČENÍ AT-Bus, KTERÉ SE NĚKDY POUŽÍVÁ I PRO DISK EIDE. NAVÍC SE PRO IDE/EIDE POUŽÍVÁ TAKÉ OZNAČENÍ ATA (AT ATTACHMENT).

SCSI ( SMALL COMPUTER SYSTÉM INTERFACE) „SKAZI“, JAK SE TAKÉ SCSI PŘEZDÍVÁ, JE KOMPLEXNĚJŠÍM ŘEŠENÍM NEŽ EIDE. VÝHODOU SCSI JE MOŽNOST ŘETĚZENÍ PŘÍKAZŮ – POKUD NĚKTERÉ ZE ZAŘÍZENÍ NA SCSI SBĚRNICI VYKONÁVÁ VNITŘNÍ ČINNOST MŮŽE POSÍLAT DATA JINÉ ZAŘÍZENÍ, NAPŘ. SCANNER.

LOGICKÁ STRUKTURA PEVNÉHO DISKU

MASTER BOOT RECORD (MBR) DATA UKLÁDANÁ NA DISK SE ZAPISUJÍ DO STOP A SEKTORŮ, KTERÉ JSOU NA DISKU JIŽ MAGNETICKY VYTVOŘENY FORMÁTOVÁNÍM NA NÍZKÉ ÚROVNI. PAMĚŤOVÝ PROSTOR JE VŠAK POTŘEBA ZORGANIZOVAT TAK, ABY ÚDAJE ULOŽENÉ NA DISK BYLY V PŘÍPADĚ POTŘEBY RYCHLE NALEZENY. ÚDAJE O DISKOVÉM PROSTORU JSOU SOUSTŘEDĚNY DO NĚKOLIKA NA SEBE NAVAZUJÍCÍCH TABULEK, TVOŘÍCÍCH LOGICKOU STRUKTURU DISKU. MASTER BOOT RECORD (MBR) OCHRANA MBR !!!! JE PRVNÍ Z ŘADY TABULEK, V PODSTATĚ JE ZÁKLADEM LOGICKÉ STRUKTURY DISKU. FYZICKY JE UMÍSTĚN V NULTÉM SEKTORU A NULTÉ STOPĚ DISKU. MÁ DVĚ ČÁSTI : ZAVÁDĚCÍ ZÁZNAM PARTITION TABLE TABULKA OBLASTÍ NAČÍTÁ TABULKU OBLASTÍ A MUSÍ NAJÍT OBLAST Z NÍŽ SE NAČTE SYSTÉM. DĚLÍ DISK NA OBLASTI

OBLAST DOS (SOUBOROVÉ SYSTÉMY ZALOŽENÉ NA TABULCE FAT) PARTITION TABLE TABULKA OBLASTÍ PARTITION TABLE DĚLÍ DISK NA OBLASTI. V KAŽDÉ OBLASTI MŮŽE BÝT NAHRANÝ JINÝ OPERAČNÍ SYSTÉM. NEJČASTĚJŠÍM PŘÍPADEM USPOŘÁDÁNÍ DISKOVÝCH OBLASTÍ JE JEN JEDNA OBLAST, S JEDNÍM OS. OBLAST DOS (SOUBOROVÉ SYSTÉMY ZALOŽENÉ NA TABULCE FAT)

LOGICKÁ STRUKTURA DISKU OS OBLAST JINÝCH OS MASTER BOOT RECORD OS PRIMÁRNÍ OBLAST DOS ROZŠÍŘENÁ OBLAST DOS DOS BOOT RECORD EXTENDED PARTITIONS TABLE EXTENDED PARTITIONS TABLE OBLAST DOS FAT 1 FAT 1 FAT 1 FAT 2 FAT 2 FAT 2 ROOT ROOT ROOT DATA DATA DATA

DĚLENÍ NA LOGICKÉ DISKY C: 500 MB PRIM.OBLAST DOS 500 MB FYZICKÝ DISK 1 GB D: 300 MB ROZ.OBLAST DOS 500 MB F: 200 MB

DOS BOOT RECORD (DBR) JE SPOUŠTĚCÍ ZÁZNAM OBLASTI DOS. JE VYTVOŘEN AUTOMATICKY PŘI LOGICKÉM FORMÁTOVÁNÍ PEVNÉHO DISKU. MÁ DVĚ ČÁSTI : KRÁTKÝ PRG, JEHOŽ ÚKOLEM JE ZAVEDENÍ SYS. SOUBORŮ DO OPER.PAMĚTI DRUHOU ČÁSTÍ JE TABULKA BPB (BIOS PARAMETER BLOCK). V NÍ JSOU ULOŽENY ÚDAJE O ZÁKLADNÍCH PARAMETRECH DISKU. NAPŘ. VELIKOST SEKTORU, POČET POVRCHŮ DISKU APOD… V ROZŠÍŘENÉ OBLASTI DOS, Z NÍŽ SE SYSTÉM NESTARTUJE, OBSAHUJE DBR POUZE TABULKU BPB.

KOŘENOVÁ SLOŽKA (ROOT DIRECTORY) EXTENDED PARTITIONS TABLE (EPT) JE FALEŠNÝM MBR UMÍSTĚNÝM V ROZŠÍŘENÉ OBLASTI DOS. JEJÍ FUNKCÍ JE UKÁZAT NA DALŠÍ EPT V ROZŠÍŘENÉ OBLASTI A PROPOJIT TAK JEDNOTLIVÁ DOSOVÁ ODDĚLENÍ DISKU. KOŘENOVÁ SLOŽKA (ROOT DIRECTORY) DALŠÍ ČÁST LOGICKÉ STRUKTURY DISKU VZNIKNE TAKÉ AUTOMATICKY, BĚHEM FORMÁTOVÁNÍ DISKU ( V TERMINOLOGII SYSTÉMU DOS SE PRO NI POUŽÍVAL TERMÍN HLAVNÍ ADRESÁŘ.) SLOUŽÍ K ZÁPISU ÚDAJŮ O SOUBORECH ULOŽENÝCH NA DISKU, JSOU ZDE OBSAŽENY VEŠKERÉ INFORMACE, KTERÉ O SOUBORU MŮŽETE ZÍSKAT. KOŘENOVÁ SLOŽKA JE TOU ČÁSTÍ LOG. STRUKTURY DISK, VE KTERÉ SE NEJVÍCE LIŠÍ FAT A NOVÁ STRUKTURA VFAT (DOVOLUJE ZÁPIS DLOUHÝCH JMEN (MAX.255 ZNAKŮ).

HLAVNÍ ADRESÁŘ VE FAT ÚDAJE PRO JEDEN SOUBOR MAJÍ VYHRAZENO MÍSTO 32 BAJTŮ. ORGANIZACE JEDNOTLIVÝCH BAJTŮ: KRÁTKÁ JMÉNA SOUBORŮ A ADRESÁŘŮ. KAŽDÉMU SOUBORU NEBO ADRESÁŘI JE V HLAVNÍM ADRESÁŘI VYHRAZENO 32 B PRO FAT DOVOLUJE POUZE JEHO POPIS. JEDEN ADRESÁŘ MŮŽE OBSAHOVAT MAXIMÁLNĚ 512 SOUBORŮ => JE NUTNÉ POUŽÍVAT ČLENĚNÍ NA PODADRESÁŘE. 8 B JE VYHRAZENO PRO JMÉNO SOUBORU 3 B PRO PŘÍPONU SOUBORU 1 B NESE INFORMACI O ATRIBUTECH SOUBORU - R (READ ONLY), H (HIDDEN), S (SYSTÉM), A (ARCHIVACE). ATRIBUT D OZNAČUJE, ZDA SE JEDNÁ O SOUBOR, NEBO PODADRESÁŘ, L OZNAČUJE JMÉNO DISKU (C:) 10 B JE NEVYUŽITÝCH (VFAT JE POUŽÍVÁ PRO INFO O SOUBORU, TJ. DATA A ČAS PRO VYTVOŘENÍ, OTEVŘENÍ). 4 B POPISUJÍ DATUM A ČAS POSLEDNÍHO ZÁPISU 2 B UKAZUJÍ NA 1. CLUSTER FAT TABULKY 4 B UCHOVÁVAJÍ DÉLKU SOUBORU

HLAVNÍ ADRESÁŘ VE VFAT VELICE PODOBNÉ FAT, ALE EXISTUJE ZDE ZÁPIS DLOUHÝCH JMEN. ORGANIZACE FUNGUJE TAK, ŽE JE VYUŽITA JEDNA NEBO VÍCE POLOŽEK DOS ADRESÁŘE. TAKÉ MÁ JEŠTĚ JEDNU FUNKCI - VYTVÁŘÍ NÁHRADNÍ JMÉNO DLOUHÉHO NÁZVU. JMÉNO SE SKLÁDÁ Z PRVNÍCH ŠESTI ZNAKŮ, VLNOVKY A POŘADOVÉHO ČÍSLA, ABY NEMOHLA VZNIKNOUT DVĚ NÁHRADNÍ JMÉNA. VE WINDOES PAK MUSÍTE VYTVÁŘET JEŠTĚ VÍCE PODSLOŽEK, PROTOŽE DO KOŘENOVÉ SLOŽKY SE KVŮLI DLOUHÝM JMÉNŮM NEVEJDE ANI TĚCH 512 POLOŽEK, KTERÉ OBSÁHL HLAVNÍ ADRESÁŘ DOSu.

FAT (FILE ALLOCATION TABLE) ONO HLAVNÍ JÁDRO LOGICKÉ STRUKTURY DISKU (FUNGUJE STEJNĚ VE FAT I VFAT). PŘIDĚLUJE DISKOVÝ PROSTOR UKLÁDANÝM PROGRAMŮM, Z HLEDISKA TABULEK JDE O TU NEJDŮLEŽITĚJŠÍ. ZÁKLADNÍ FYZICKOU DATOVOU JEDNOTKOU DISKU JE SEKTOR (512 B). ALOKAČNÍ JEDNOTKA (CLUSTER) PŘEDSTAVTE SI, JAKÉ OHROMNÉ MNOŽSTVÍ SEKTORŮ MUSÍ OBSAHOVAT TAKOVÝ 30GB DISK. PROTO EXISTUJE COSI JAKO CLUSTER (ALOKAČNÍ JEDNOTKA) . DO NĚJ SE SDRUŽUJÍ SEKTORY, A TAK JE CLUSTER NEJMENŠÍ LOGICKOU JEDNOTKOU NA DISKU. POČET SEKTORŮ V CLUSTERU JE ZÁVISLÝ NA KAPACITĚ DISKU A MOŽNOSTECH TABULKY FAT. SEKTORY 1-4

POČET SEKTORŮ V ALOKAČNÍ JEDNOTCE VYPLÝVÁ Z KAPACITY DISKU A MOŽNOSTÍ TABULKY FAT. ČÍM JE VĚTŠÍ VELIKOST DISKU, TÍM VÍCE JE SEKTORŮ V ALOKAČNÍ JEDNOTCE. POKUD BUDEME CHTÍT ULOŽIT NA DISK SOUBOR O VELIKOSTI JEDNOHO JEDINÉHO BAJTU, OBSADÍME JEDNU DATOVOU JEDNOTKU, TEDY CELÝ CLUSTER !!! JEDNOBAJTOVÝM SOUBOREM TAK OBSADÍME NAPŘ. 16384 B. TO JE VELKÁ SLABINA FAT – TU ODSTRAŇUJE FAT 32, U NÍŽ CLASTER OBSAHUJE PODSTATNĚ MÉNĚ SEKTORŮ.

VELIKOST CLUSTERŮ VELIKOST DISKU (GB) (LOGICKÉHO ČI FYZICKÉHO) VELIKOST CLUSTERU (kB) ( VE FAT 16) ( VE FAT 32) ( NTFS) 1 – 2 32 4 2 2 – 4 64 4 – 8 NEPODPORUJE 16 – 16 8 16 – 32 16 32 – 2 TB

12 BITOVÁ FAT JEDEN Z NEJSTARŠÍCH TYPŮ. JEJÍ VYUŽITÍ V DNEŠNÍ MODERNÍ DOBĚ JE MOŽNÉ SNAD JENOM NA DISKETÁCH. SAMA O SOBĚ DOKÁŽE ADRESOVAT POUZE 2 ^ 12. DOHROMADY TO DÁVÁ 4096 CLUSTERŮ. CO SE TÝČE ZABRANÉHO MÍSTA NA DISKU, TAK TO SE ROVNÁ 6 KB. 16 BITOVÁ FAT JEŠTĚ NEDÁVNO NEJVÍCE VYUŽÍVANÁ VARIANTA FAT TABULKY. DNES UŽ USTOUPILA DO POZADÍ PŘED FAT32. JEJÍ ADRESACE SE ROVNÁ 2 ^16 , 65 534 CLUSTERŮ. JEJÍ OBSAH SE Z 6 KB ZVÝŠIL NA 128 KB. ZDE UŽ TO NENÍ TAK STATICKÉ JAKO U FAT12, TAKŽE VELIKOST JEDNOHO CLUSTERU SE MĚNÍ PODLE TYPU DISKU. Z TOHO VYPLÝVÁ, ŽE NEJVĚTŠÍ VELIKOST DISKU, KTEROU FAT16 ZVLÁDNE, JE 2,1 GB (JEDNODUCHÝ VZOREC, JDE O 32 KB VELIKOSTI CLUSTERU: 32 768 B × 65 534 CLUSTERŮ = 2 147 418 112 B = 2,1 GB). TAKŽE JSME SI VZORCEM VYJÁDŘILI, PROČ FAT16 ZVLÁDÁ DISKY DO 2,1 GB. VLASTNÍTE-LI VĚTŠÍ DISK, MUSÍTE HO ROZDĚLIT NA LOGICKÉ JEDNOTKY O NEJVĚTŠÍ VELIKOSTI 2,1 GB.

32 BITOVÁ FAT TENTO DRUH FAT TABULKY SE ZAČAL DODÁVAT S VERZÍ OPERAČNÍHO SYSTÉMU WINDOWS 95 OSR2 A WINDOWS 98. ADRESACE JE TU UŽ 2 ^ 32 (4 296 967 296 CLUSTERŮ). V LEHKÉM SELSKÉM PŘEPOČTU TO ZNAMENÁ, ŽE ZVLÁDÁ DNEŠNÍ VELIKOSTI DISKŮ, KTERÉ UŽ HODNĚ DLOUHO NEJSOU KOLEM 4 GB, ALE POHYBUJÍ SE KOLEM DESETINÁSOBKŮ. DÁLE JE TU DALŠÍ VYLEPŠENÍ, ČÍMŽ JE MENŠÍ VELIKOST CLUSTERU. V DŮSLEDKU TO ZNAMENÁ, ŽE SE URYCHLÍ PRÁCE A VŮBEC CELÝ SYSTÉM PRÁCE S DATOVÝM PROSTOREM DISKU.

KOŘENOVÁ SLOŽKA (ROOT DIRECTORY) Tabulka.dbf 102H Dopis.doc 105H TABULKA FAT 103H 104H FFFF 107H 0000 108H FFFF 0000 102H 103H 104H 105H 106H 107H 108H 109H ČÍSLA CLUSTERŮ CLUSTER SEKTOR PRINCIP FAT

ZPŮSOBY FORMÁTOVÁNÍ RYCHLÉ (VYMAZAT) — NA NIC JINÉHO NĚŽ NA FAT SE NESAHÁ. STARÁ TABULKA SE PŘEPÍŠE NOVOU A DISK SE BUDE JEVIT JAKO SPOKOJENĚ NAFORMÁTOVANÝ, TJ. ČISTÝ. BOHUŽEL, TENTO ZPŮSOB NEDOKÁŽE ODHALIT NEČITELNÉ CLUSTERY A TAKÉ NESPOLUPRACUJE S DISKY, KTERÉ PŘED TÍM NĚKDY NEBYLY VYSOCE NAFORMÁTOVANÉ. SAMOZŘEJMĚ, PLUS JE V RYCHLOSTI, TOHO SE DOSÁHNE TÍM, ŽE SE NAPROSTO IGNORUJÍ DATOVÉ OBLASTI. ÚPLNÉ — NEJSPOLEHLIVĚJŠÍ ŘEŠENÍ MNOHA PROBLÉMŮ. NA DISKU SE VYTVOŘÍ ZCELA NOVÁ LOGICKÁ STRUKTURA A STARÁ FAT TABULKA SE PŘEPÍŠE NOVOU. PRŮBĚŽNĚ SE TAKÉ OTESTUJE A PŘÍPADNĚ SE ZALOŽÍ I NOVÉ DATOVÉ CLUSTERY.

(NEW TECHNOLOGY FILE SYSTÉM) NTFS (NEW TECHNOLOGY FILE SYSTÉM) CO TO TEDY NTFS JE? JEDNÁ SE O SOUBOROVÝ SYSTÉM MICROSOFTU PODPOROVANÝ JEJICH OPERAČNÍMY SYSTÉMY WINDOWS NT 3.1, 3.11, 3.5, 3.51, 4.0, WINDOWS 2000 A XP. JINÝMI OPERAČNÍMI SYSTÉMY NENÍ S PLNOU FUNKČNOSTÍ PODPOROVÁN. ZAČNĚME NEJBĚŽNĚJŠÍMI FAKTY. ODDÍL (PARTITION) NTFS MŮŽE MÍT VELIKOST 4 TB. TO NÁM ZARUČÍ, ŽE NÁM BUDE DOSTAČOVAT JEŠTĚ HODNĚ DLOUHO.

VÝHODY OBNOVITELNOST : PŘI ČINNOST VYUŽÍVÁ TRANSAKCE. TRANSAKCE JE NĚKOLIK DÍLČÍCH AKCÍ (NAPŘ. ZÁPIS NA DISK MŮŽEME ROZDĚLIT NA : PŘENOS DAT DO ŘADIČE DISKU, VYHLEDÁNÍ VOLNÉHO MÍSTA NA DISKU, VLASTNÍ ZÁPIS DAT, ULOŽENÍ ZPRÁVY O POLOZE ZAPSANÝCH DAT DO TABULKY LOGICKÉ STRUKTURY). POKUD DOJDE BĚHEM TRANSAKCE K HAVÁRII V NĚKTERÉM Z JEJICH KROKŮ, TRANSAKCE SE NEPROVEDE. NEMŮŽE TEDY DOJÍT NAPŘ. KE ZTRÁTĚ CLUSTERU (JAKO U FAT). PŘEMAPOVÁNÍ CLUSTERŮ : POKUD SE NA DISKU OBJEVÍ VADNÝ SEKTOR, NTFS PŘEMAPUJE CLUSTER A DATA UMÍSTÍ DO NOVÉHO CLUSTERU. ADRESY CLUSTERŮ S VADNÝM SEKTOREM JSOU ULOŽENY DO SOUBORU MTF, TAKŽE CHYBNÝ SEKTOR NEMŮŽE BÝT ZNOVU POUŽIT. KOMPRESE : KOMPRIMACE SVAZKŮ, SLOŽEK A SOUBORŮ JE ZAPRACOVÁNA PŘÍMO DO NTFS, NEMUSÍME POUŽÍVAT ŽÁDNÉ DALŠÍ PROGRAMY.

VYLEPŠENÁ SPRÁVA DAT : NENÍ OMEZEN POČET POLOŽEK V KOŘENOVÉ SLOŽCE JE MOŽNÉ FORMÁTOVAT SVAZKY DO VELIKOSTI 2 TB NTFS POUŽÍVÁ MENŠÍ CLUSTERY PŘI VYHLEDÁVÁNÍ SOUBORŮ JE MINIMALIZOVÁN POČET PŘÍSTUPŮ NA DISK OPRÁVNĚNÍ : NTFS UMOŽŇUJE NASTAVIT OPRÁVNĚNÍ PRO SLOŽKY A SOUBORY DISKOVÉ KVÓTY : JEJICH PROSTŘEDNICTVÍM JE MOŽNÉ DEFINOVAT DISKOVÝ PROSTOR, KTERÝ BUDOU MOCI POUŽÍVAT JEDNOTLIVÝ UŽIVATELÉ SYSTÉMU. ŠIFROVÁNÍ DAT : NTFS OBSAHUJE ŠIFROVACÍ SYSTÉM, KTERÝ VE SPOJENÍ S TECHNOLOGIÍ VEŘEJNÉHO KLÍČE DOKÁŽE ZAŠIFROVAT DATA A CHRÁNIT OBSAH SOUBORŮ PŘED ZNEUŽITÍM.