Složitější funkce tangens a kotangens

Slides:



Advertisements
Podobné prezentace
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Advertisements

F U N K C E III Funkce 20 Goniometrické funkce s absolutní hodnotou
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
F U N K C E II Funkce 5 Mocninná funkce 3 Čihák Plzeň 2013, 2014.
Mgr. Vladimír Wasyliw - s využitím práce Mgr. Petra Šímy – SŠS Jihlava
GRAFY SLOŽENÝCH GONIOMETRICKÝCH FUNKCÍ
Název školy Střední škola pedagogická, hotelnictví a služeb,
Základy infinitezimálního počtu
Čihák Plzeň 2013, 2014 Funkce 18 Goniometrické funkce Složitější funkce sinus a kosinus.
Goniometrické funkce Mgr. Alena Tichá.
Funkce Vlastnosti funkcí.
Rozcvička Urči typ funkce:.
Čihák Plzeň 2013, 2014 Funkce 11 Kvadratická funkce 3.
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
Výukový materiál vytvořený v rámci projektu „EU peníze školám“
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B01 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Goniometrické funkce II.
Exponenciální funkce Körtvelyová Adéla G8..
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Funkce Funkce f reálné proměnné x je předpis, který každému x e R přiřadí nejvíc jedno y e R tak, že y = f(x) Definiční obor funkce D je množina všech.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
Šablona:III/2č. materiálu:VY_32_INOVACE_159 Jméno autora: Mgr. Tomáš FULÍN Třída/ročník: PS2 / 2.ročník Datum vytvoření: Vzdělávací oblast:Matematika.
Gymnázium, Žamberk, Nádražní 48 Projekt: CZ.1.07/1.5.00/ Inovace ve vzdělávání na naší škole Název: Funkce tangens a kotangens Autor: Mgr. Petr.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Šablony Mendelova střední škola, Nový Jičín
VLASTNOSTI FUNKCÍ Příklady.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
9.přednáška vyšetřování průběhu funkce
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
vlastnosti lineární funkce
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2.
Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A10 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Matematický milionář Foto: autor
Funkce tangens a kotangens autor: RNDr. Jiří Kocourek
Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt: CZ.1.07/1.5.00/
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A11 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B04 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
DEFINICE GONIOMETRICKÝCH FUNKCÍ
Dotkněte se inovací CZ.1.07/1.3.00/ Funkce sinus.
FUNKCE TANGENS A KOTANGENS. Definice funkcí tangens a kotangens Funkce tangens a kotangens 2 Funkcí tangens nazýváme funkci, která je dána rovnicí Funkcí.
Funkce Funkce je zobrazení z jedné číselné množiny do druhé, nejčastěji Buď A a B množiny, f zobrazení. Potom definiční obor a obor hodnot nazveme množiny:
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Graf, vlastnosti - výklad
Goniometrické funkce a rovnice
Základy infinitezimálního počtu
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
DIGITÁLNÍ UČEBNÍ MATERIÁL
Vztahy mezi goniometrickými funkcemi
Matematický milionář Foto: autor
Matematika Funkce - opakování
Funkce a jejich vlastnosti
Goniometrické funkce Tangens a kotangens. Goniometrické funkce Tangens a kotangens.
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Kvadratická funkce Matematika – 9.ročník VY_32_INOVACE_
Transkript prezentace:

Složitější funkce tangens a kotangens F U N K C E III Funkce 19 Goniometrické funkce Složitější funkce tangens a kotangens Čihák Plzeň 2013, 2014

Goniometrické funkce Př.: Je dána f: y=2+tg(x+ 0,25π). Sestrojte graf a určete vlastnosti funkce. Řešení: vycházíme z předpisu funkce g: y = tg x funkce g je posunuta: ve směru osy x o: - 0,25π ≐ -0,8 ve směru osy y o: +2 Graf Vlastnosti Další

Goniometrické funkce f:y=2+tg(x+ 0,25π), (g:y=tg x), zadání, vlastnosti

Goniometrické funkce Předpis: f: y=2+tg(x+ 0,25π) graf Vlastnosti funkce f určíme z grafu: H(f) = R není prostá, není lichá, není sudá není omezená je periodická s periodou π funkce není klesající funkce je rostoucí na ⟨-0,75π+kπ; 0,25π+kπ⟩ průsečík s osou y (početně: x=0): y = 3 průsečík s osou x (početně: y=0): x ≐ -1,89+kπ lokální maximum: neexistuje lokální minimum: neexistuje

Goniometrické funkce Př.: Je dána f: y=-cotg(0,5x), x∈(-360°;360°). Sestrojte graf a určete vlastnosti funkce. Řešení: vycházíme z předpisu funkce g: y = cotg x funkce g je: ve směru osy x: „protažená“ 2 krát ve směru osy y: převrácená Graf Vlastnosti

Goniometrické funkce f:y=-cotg(0,5x), (g:y=cotg x), zadání, vlastnosti

Goniometrické funkce Předpis: f: y=-cotg(0,5x) graf Vlastnosti funkce f určíme z grafu: H(f) = R není prostá, je lichá, není sudá není omezená je periodická s periodou 360° klesající: není rostoucí: (-360°,0°), (0°,360°) průsečík s osou y: neexistuje (x ≠ 0) průsečík s osou x: x = -180°, 180° lokální maximum: neexistuje lokální minimum: neexistuje