Dvourozměrné geometrické útvary

Slides:



Advertisements
Podobné prezentace
Dvourozměrné geometrické útvary
Advertisements

Úhel Převody jednotek velikosti úhlů Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radomír Macháň. Dostupné z Metodického portálu.
Název školy: Speciální základní škola, Louny,
NÁZEV ŠKOLY: Speciální základní škola, Chlumec nad Cidlinou, Smetanova 123 Autor: Eva Valentová NÁZEV: VY_32_INOVACE_303_Trojúhelník – výpočty Téma: Geometrie.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
TECHNICKÉ KRESLENÍ ZOBRAZENÍ ROVIN [1] Autor: Ing. Jindřich Růžička Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo.
Dvourozměrné geometrické útvary
Sčítání a odčítání úhlů
NÁZEV: VY_32_INOVACE_01_15_M6_Hanak TÉMA: Úhel
ÚHLY, ÚHLÍKY Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Dvourozměrné geometrické útvary
Matematika a její aplikace - geometrie pro 1.stupeň.
AUTOR: Mgr. Hana Vrtělková NÁZEV: VY_32_INOVACE_M_20_Rovinné útvary
ANALYTICKÁ GEOMETRIE V ROVINĚ
Lineární funkce - příklady
Síla a skládání sil Ing. Jan Havel.
GONIOMETRICKÁ FUNKCE SINUS
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Lubomíra Moravcová Název materiálu:
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633
8.1 Aritmetické vektory.
Vlastnosti trojúhelníku
autor: RNDr. Jiří Kocourek
Množiny bodů dané vlastnosti
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Základní jednorozměrné geometrické útvary
Úhly Pracovní list NÁZEV ŠKOLY: Speciální základní škola, Chlumec nad Cidlinou, Smetanova 123 Autor: Eva Valentová NÁZEV: VY_32_INOVACE_305_Úhly – pracovní.
Základní konstrukce Obdélník (známe-li délku jedné jeho strany a úhel, který s ní svírá úhlopříčka)
Známe-li délku úhlopříčky.
GEOMETRICKÉ TVARY v rozsahu učiva 1. stupně ZŠ
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Lubomíra Moravcová Název materiálu:
Rovnice a graf přímé úměrnosti.
MATEMATIKA – GEOMETRIE 7
Goniometrické funkce Autor © Ing. Šárka Macháňová
Úvod do geometrie Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
DIGITÁLNÍ UČEBNÍ MATERIÁL
Trojúhelníky Názvosloví Obvod Rozdělení Obsah Výšky v trojúhelníku
Základní konstrukce Obdélník (známe-li délku jedné jeho strany a úhlopříčky) Autor obrázků © Mgr. Radomír Macháň.
Provozováno Výzkumným ústavem pedagogickým v Praze.
Autor obrázků © Mgr. Radomír Macháň
Jsou přímky a , b: rovnoběžky různoběžky Správná odpověď: b a různoběžky.
Dvourozměrné geometrické útvary
Dvourozměrné geometrické útvary
Podobnost trojúhelníků
PLANIMETRIE Zobrazení v rovině
Geometrie pro 6. ročník Autor: Mgr. Hana Vítková Datum:
ÚHLY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jarmila Hájková Dostupné z Metodického portálu ; ISSN
Výukový materiál pro 9.ročník
Rozvoj geometrických představ
TROJÚHELNÍK Druhy trojúhelníků
Výuka matematiky v 21. století na středních školách technického směru
ÚVOD DO GEOMETRIE Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. Materiál je určen pro bezplatné.
Čtyřúhelníky názvosloví rozdělení úhly úhlopříčky osová souměrnost
Úhly v kružnici Středový a obvodový úhel (vztah mezi nimi)
Shodnost trojúhelníků Konstrukce trojúhelníků
VY_32_INOVACE_Sib_II_14 Geometrie první pololetí
Dvourozměrné geometrické útvary
Lineární funkce a její vlastnosti
Konstrukce trojúhelníku - Ssu
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Množiny bodů v rovině Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Dělitelnost přirozených čísel
Grafy kvadratických funkcí
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Teorie chyb a vyrovnávací počet 2
Dvourozměrné geometrické útvary
AUTOR: Mgr. Jiří Burda NÁZEV: VY_32_INOVACE_M2_12_Přímka TEMA: Přímka
Dělitelnost přirozených čísel
Úhly NÁZEV ŠKOLY: Speciální základní škola, Chlumec nad Cidlinou, Smetanova 123 Autor: Eva Valentová NÁZEV: VY_32_INOVACE_304_Úhly Téma: Geometrie Číslo.
Konstrukce trojúhelníku
Transkript prezentace:

Dvourozměrné geometrické útvary Dvojice úhlů. Úhly vedlejší a vrcholové.

Zopakujme si nejdříve, co už o úhlu víme. Úhel je část roviny vymezená dvěma polopřímkami se stejným počátkem. Tyto polopřímky se nazývají ramena úhlu, jejich společný počátek je pak vrchol úhlu. A B + V Myslí si snad ještě někdo, že úhel jsou ty dvě „čáry“ (ramena)? Pak tedy ještě jednou: Úhel jsou nejen ta dvě ramena, ale i všechny body mezi nimi! Je to část roviny vymezená rameny úhlu.

Úhel. Úhel se značí dvěma způsoby: 1.) pomocí vrcholu a dvou bodů, z nichž každý leží na jednom z ramen. Písmenko označující vrchol se píše mezi těmito dvěma body (v našem příkladě jde o úhel AVB). Zapisujeme: AVB 2.) pomocí malých písmen řecké abecedy (α, β, γ, δ, …) A α B + V

Druhy úhlů podle velikosti. konvexní úhel, (tj. úhel přímý nebo menší) nekonvexní (konkávní) úhel (tj. úhel větší než přímý)

Podrobnější rozdělení úhlů podle velikosti. přímý úhel pravý úhel nulový úhel tupý úhel ostrý úhel plný úhel

Dvojice úhlů Mějme dvojici různoběžek s průsečíkem V. Pro kolik úhlů je bod V vrcholem? V Jsou to tedy čtyři úhly. Pojďme se nyní podívat na jejich vlastnosti.

A navíc ještě oba leží při stejné přímce. Dvojice úhlů Co můžeme říci o dvojici úhlů α a γ? Co byste řekli o jejich velikostech? Přesněji o součtu jejich velikostí? Takové dvojici úhlů, které mají jedno společné rameno a vrchol, se říká vedlejší úhly. Mají společné rameno … V … a vrchol. Součtem vedlejších úhlů dostaneme úhel přímý. Přímý úhel měří 180° a jeho ramena jsou opačné polopřímky. A navíc ještě oba leží při stejné přímce. Platí tedy: α + γ = 180°

Dvojice úhlů – vedlejší úhly Platí tedy, že součet vedlejších úhlů je 180°. Kolik dvojic vedlejších úhlů vytvoří dvojice protínajících se přímek? α + γ = 180° α + δ = 180° V β + γ = 180° β + δ = 180° Existují tedy čtyři dvojice vedlejších úhlů.

Nemají společné rameno, mají společný jen vrchol. Dvojice úhlů Co můžeme říci o dvojici úhlů α a β? Co můžeme říci o jejich velikosti? Takové dvojici úhlů, které nemají společné rameno (mají společný jen vrchol), se říká vrcholové úhly. V Nemají společné rameno, mají společný jen vrchol. Vrcholové úhly mají stejnou velikost, jsou shodné. Platí tedy: α = β

Dvojice úhlů – vrcholové úhly Platí tedy, že vrcholové úhly jsou shodné. Kolik dvojic vrcholových úhlů vytvoří dvojice protínajících se přímek? γ = δ α = β V Existují tedy dvě dvojice vrcholových úhlů.

Dvojice úhlů – speciální případ Mějme opět dvojici různoběžek s průsečíkem V, ovšem nyní takových, které jsou na sebe kolmé. Co můžeme v dané situaci o úhlech říci? Všechny úhly jsou stejné, a protože dohromady dávají 360°, připadá na každý jeden z nich 90°, což znamená, že jde o úhly pravé. V Pravý úhel je takový úhel, který má stejnou velikost jako jeho úhel vedlejší. Součtem dvou pravých úhlů dostáváme úhel přímý.

Příklady Jak se říká dvojici těchto úhlů a co můžeš říci o jejich velikosti?

vrcholové úhly α = β Příklady Jak se říká dvojici těchto úhlů a co můžeš říci o jejich velikosti? vrcholové úhly α = β

Příklady Jak se říká dvojici těchto úhlů a co můžeš říci o jejich velikosti?

vedlejší úhly β + γ = 180° Příklady Jak se říká dvojici těchto úhlů a co můžeš říci o jejich velikosti? vedlejší úhly β + γ = 180°

Příklady Vyznač ke každému z daných úhlů úhel, s nímž tvoří dvojici úhlů vrcholových.

Příklady Vyznač ke každému z daných úhlů úhel, s nímž tvoří dvojici úhlů vrcholových.

Příklady Vyznač ke každému z daných úhlů úhel, s nímž tvoří dvojici úhlů vedlejších.

Příklady Vyznač ke každému z daných úhlů úhel, s nímž tvoří dvojici úhlů vedlejších.

Příklady Doplň velikosti všech úhlů a zdůvodni určenou velikost.

Příklady Doplň velikosti všech úhlů a zdůvodni určenou velikost.

Výborně! Myslím, že už víš, jakým dvojicím úhlů se říká vrcholové a jaké vedlejší. Pro jistotu a proto, že opakování je matkou moudrosti, ještě jednou: úhly vrcholové úhly vedlejší α = β α + β = 180°