Pravděpodobnost. Náhodný pokus.

Slides:



Advertisements
Podobné prezentace
Základní typy rozdělení pravděpodobnosti diskrétní náhodné veličiny
Advertisements

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ZÁKLADY PRAVDĚPODOBNOSTI
Kombinatorika a klasická pravděpodobnost
Vybraná rozdělení diskrétní náhodné veličiny
PERMUTACE a VARIACE 2.1 Permutace 2.2 Variace bez opakování
Pravděpodobnost 11  Zásobník úloh  Opakování, procvičení VY_32_INOVACE_21-12.
Zabývá se různými způsoby výběru prvků z daného souboru.
PERMUTACE a VARIACE 2.1 Permutace 2.2 Variace bez opakování
Teorie pravděpodobnosti
Zdroj: Kombinatorika Zdroj:
Bayesův teorém – cesta k lepší náladě
VY_32_INOVACE_21-14 Test č.2 Podmíněná pravděpodobnost Nezávislé jevy.
Generování náhodných veličin (1) Diskrétní rozdělení
Náhodná veličina.
VY_32_INOVACE_21-01 PRAVDĚPODOBNOST 1 Úvod, základní pojmy.
25. října 2004Statistika (D360P03Z) 4. předn.1 Statistika (D360P03Z) akademický rok 2004/2005 doc. RNDr. Karel Zvára, CSc. KPMS MFF UK
Základy informatiky přednášky Entropie.
Binomická distribuce Při zjišťování p je nutné znát:  a) celkový počet možných jednoduchých jevů  b) počet jednoduchých jevů který spadá do jevu/třídy.
Matematický aparát v teorii informace Základy teorie pravděpodobnosti
VY_32_INOVACE_21-08 Pravděpodobnost 8 Podmíněná pravděpodobnost – II.
VY_32_INOVACE_21-10 TEST č. 1.
Nechť (, , P) je pravděpodobnostní prostor:
Pravděpodobnost a genetická prognóza
Náhodný jev A E na statistickém experimentu E - je určen vybranou množinou výsledků experimentu: výsledku experimentu lze přiřadit číslo, náhodnou proměnnou.
Pravděpodobnost (pracovní verze). 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment)  Akt vedoucí k jednomu výsledku - např. hod kostkou,
Nezávislé pokusy.
STATISTIKA (PRAVDĚPODOBNOST A STATISTIKA)
POČET PRAVDĚPODOBNOSTI
Pravděpodobnost. Náhodný pokus.
Funkce více proměnných.
PRAVDĚPODOBNOST NEZÁVISLÉ JEVY Jevy A,B nazýváme nezávislými, jestliže
ZÁKLADY TEORIE PRAVDĚPODOBNOSTI
K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Úvod do pravděpodobnosti VY_32_INOVACE_M4r0113 Mgr. Jakub Němec.
Základy zpracování geologických dat
Množiny.
Přírodní vědy aktivně a interaktivně
Pravděpodobnost 7  Podmíněná pravděpodobnost. Definice  Podmíněná pravděpodobnost náhodného jevu A je pravděpodobnost jevu A, ale v závislosti na dalším.
Vektorové prostory.
Kombinatorika, pravděpodobnost, statistika
2. Vybrané základní pojmy matematické statistiky
Základy matematické statistiky. Nechť je dána náhodná veličina X (“věk žadatele o hypotéku“) X je definována rozdělením pravděpodobností, s nimiž nastanou.
SZŠ a VOŠZ Zlín ® předkládá presentaci Kabinet MAT Mgr. Vladimír Pančocha.
Kombinatorika, pravděpodobnost, statistika
Pravděpodobnost 5  Pravděpodobnost při jevech disjunktních a nedisjunktních VY_32_INOVACE_21-05.
K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Variace s opakováním VY_32_INOVACE_M4r0110 Mgr. Jakub Němec.
Kombinatorika, pravděpodobnost, statistika
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky 1.
Příklad 1 Urči pravděpodobnost získání výhry ve Sportce pro 4 uhodnutá čísla. Řešení: Ve Sportce se losuje 6 výherních čísel ze 49 čísel v osudí. Výherní.
Náhodná veličina. Nechť (, , P) je pravděpodobnostní prostor:
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Možnosti využití stavebnice v matematických disciplínách posloupnosti, kombinatorika, pravděpodobnost a analytická geometrie v prostoru Autorem materiálu.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Pravděpodobnost Přednáška č.2. Deterministický a náhodný děj Každý děj probíhá za uskutečnění jistého souboru podmínek Deterministický děj-děj, ve kterém.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede.
Podmíněné pravděpodobnosti
Pravděpodobnost. Náhodný pokus.
Některá rozdělení náhodných veličin
Náhodná veličina.
Matematika Pravděpodobnost
Výukový materiál zpracován v rámci projektu
ČÍSLO PROJEKTU ČÍSLO MATERIÁLU NÁZEV ŠKOLY AUTOR TÉMATICKÝ CELEK
Výukový materiál zpracován v rámci projektu EU peníze školám
Vzdělávání pro konkurenceschopnost
Kombinatorika. Základní pojmy. Pravidla pro práci se skupinou:
Provozováno Výzkumným ústavem pedagogickým v Praze.
Provozováno Výzkumným ústavem pedagogickým v Praze.
2. Vybrané základní pojmy matematické statistiky
Transkript prezentace:

Pravděpodobnost. Náhodný pokus. Při každém opakování pokusu dostáváme jiné výsledky. V praxi nelze zaručit totožné podmínky při opakování pokusu. V praxi je každý pokus náhodný ve výše uvedeném smyslu. Základní prostor. Při každém opakování pokusu dostáváme jiné výsledky, Avšak množina výsledků je známa. Množina možných výsledků je základní prostor . Elementární jevy. Prvky základního prostoru jsou elementární jevy. (E1, E2, …) Náhodný jev. Každá podmnožina náhodného prostoru je náhodný jev. (A, B, …) Prázdná podmnožina  označuje jev nemožný, Množina  označuje jev jistý.

Příklad. Náhodný pokus : hod hrací kostkou Elementární náhodné jevy Ei: padne i, i = 1, 2, …,6 Příklady náhodných jevů: A Padne liché číslo A  , A = E1  E3  E5. B Padne číslo > 5, B  , B = E6. C Padne číslo > 6, C = . D padne číslo v intervalu <1, 6>, D = . Operace s náhodnými jevy.

Klasická definice pravděpodobnosti. Předpokládá se, že základní prostor  je konečný, je tvořen n neslučitelnými elementárními jevy, všechny elementární jevy jsou stejně možné. Pak si lze představit rozklad libovolného jevu A na m-tici elementárních, neslučitelných, stejně možných jevů. P(A) = m / n, neboli P(A) = počet příznivých případů / počet všech případů. Příklad. Určete pravděpodobnost, že při hodu kostkou padne liché číslo. Elementární jevy příznivé jevu “padne liché číslo“ jsou 3 (padne 1,padne3, padne 5). m = 3, n = 6. Tedy P = 0.5. Zobecnění klasické definice.  - algebra . Je to systém podmnožin základního prostoru , který splňuje Ai  , i = 1, 2, …   Ai   ( - aditivita) A     A     

Axiomatická definice pravděpodobnosti. Nechť je dána  - algebra  nad základním prostorem . Pravděpodobností nazveme funkci P:   R s vlastnostmi P (A)  0 pro každý A   P() = 1, P() = 0 Ai  , i = 1, 2, … jsou neslučitelné jevy  P( Ai ) =  P(Ai) Trojice (, , P) se nazývá pravděpodobnostní prostor. Příklad. Dokažte, že platí pro každé A, B   P( A ) = 1- P(A) A  B  P(A) ≤ P(B) A  B  P(B \ A) = P(B) – P(A) P(A + B) = P(A) + P(B) – P(A  B)

P(AA) = P() = 1 = P(A) + P(A), protože A a A jsou neslučitelné. Odtud P(A) = 1 - P(A). P(B) = P(A) + P(B \ A)  P(A). Z (2) je P(B \ A) = P(B) – P(A). P(A + B) = P(B\ (A B)) + P(A\(A B)) + P(A  B) = P(B) + P(A) - P(A  B).

Příklad. Mezi 10 barevnými koulemi je 6 modrých a 4 bílé. Vypočtěte pravděpodobnosti: náhodně vybraná koule je bílá tři náhodně vybrané koule jsou modré 2 náhodně vybrané koule jsou různé barvy. Řešení. všechny koule mají stejnou pravděpodobnost být taženy. P = 0.4. počet všech možných výběrů je . Počet jevů příznivých jevů je . Pravděpodobnost je tedy Počet všech dvojic je = 45. Počet různých dvojic je 6*4 = 24. Pravděpodobnost je tedy 24/45.

Příklad. V šestnácti lahvích jsou minerálky. Víme, že v 10 láhvích je Šaratice a v 6 lahvích je Vincentka. Jaká je pravděpodobnost, že mezi 4 náhodně vybranými lahvemi jsou 2 Šaratice a 2 Vincentky. N = 16 (počet všech lahví) V = 10 (počet lahví Šaratice) N-V = 6 (počet lahví Vincentka) n = 4 (počet náhodně vybraných lahví) k = 2 (výběr Šaratice) n - k = 2 (výběr Vincentka)

Další definice pravděpodobnosti. geometrická definice.  je oblast (v rovině, v prostoru, …), A je její podmnožina. Definuje se pravděpodobnost, že pro x   platí, že x  A. P = “velikost“ A / “velikost“ . statistická definice. Nastane-li v n pokusech jev A mn-krát, pak pravděpodobnost jevu A definujeme Podmíněná pravděpodobnost, nezávislé jevy. Pravděpodobnost jevu A za předpokladu, že nastal jev B je podmíněná pravděpodobnost jevu A a značí se P (A/B). Platí P (A/B) = P(A B) / P(B). Jevy A a B jsou nezávislé právě, když P(A B) = P(A)P(B).

Příklad. Máme krabici se třemi bílými a dvěma černými koulemi. Vytáhneme postupně dvě koule (první nevracíme zpět). Určete pravděpodobnost toho, že v druhém tahu vytáhneme bílou kouli za předpokladu, že v prvním tahu byla vytažena černá koule. A … v 2. tahu tažena bílá koule B … v 1. tahu tažena černá koule Možnosti. B1B2, B1B3, B2B1, B2B3, B3B1, B3B2, B1 (černá 1,2), B2 (černá 1,2), bílá 3 (černá 1,2), Č1 (bílá 1,2,3), Č2 (bílá 1,2,3,). Č1Č2, Č2Č1 Celkem 20 možností. Černá v 1. tahu: 8 možnosti, P(B) = 8/20 = 0.4 (Nebo také 2/5 = 0.4.) Černá v 1. tahu a současně bílá v 2. tahu představuje 6 možností, P(A  B) = 6/20 = 0.3. P(A/B) = 6/8 = 3/4.

Příklad. Dokažte Z definice podmíněné pravděpodobnosti plyne, že P(A  B) = P(A / B)P(A) = P(B / A)P(B). Úplná pravděpodobnost. Nechť je dán úplný systém vzájemně neslučitelných jevů H1, H2, ..., Hn a libovolný jev A, který může nastat pouze současně s některým z jevů Hi. Pro pravděpodobnost jevu A platí: P(A) = P(H1).P(A/H1)+P(H2).P(A/H2)+...+P(Hn).P(A/Hn)

Příklad. V obchodě jsou tři pokladny, na nichž dojde k chybě v účtování s pravděpodobností: 0,1; 0,05 a 0,2, při čemž z hlediska umístění pokladen v obchodě jsou pravděpodobnosti odbavení pokladnami 0,3; 0,25 a 0,45. Jaká je pravděpodobnost, že osoba opouštějící obchod má chybný účet? jev A: došlo k chybě v účtování jev Hi: odbavení i-tou pokladnou jev A je možno vyjádřit: A = (A  H1)  (A  H2)  (A  H3) (zákazník má chybný účet, při čemž projde první pokladnou nebo má chybný účet po odbavení druhou pokladnou nebo má chybný účet a prošel třetí pokladnou) Jevy A  H1, A  H2, A  H3 jsou vzájemně neslučitelné, proto: P(A) = P((A  H1)  (A  H2)  (A  H3)) = P(A  H1) + P(A  H2) + P(A  H3) = P(H1).P(A/H1) + P(H2).P(A/H2) + P(H3).P(A/H3) = 0,3.0,1 + 0,25.0,05 + 0,45.0,2 = 0,1325

Bayesova formule. Nechť je dán úplný systém vzájemně neslučitelných jevů H1, H2, ..., Hn a libovolný jev A, který může nastat jen současně s některým z jevů Hi. Pak pravděpodobnost, že nastane jev Hi, za předpokladu, že nastal jev A je: , kde Příklad. V obchodě jsou tři pokladny, na nichž dojde k chybě v účtování s pravděpodobností: 0,1; 0,05 a 0,2, při čemž z hlediska umístění pokladen v obchodě jsou pravděpodobnosti odbavení pokladnami 0,3; 0,25 a 0,45. Jaká je pravděpodobnost, že jsme byli u druhé pokladny, máme-li chybný účet? Hledáme tedy, čemu je rovno P(H2 / A).

Příklad. Házíme šestkrát kostkou. Vypočtěte pravděpodobnost, že z těchto šesti hodů padne šestka právě dvakrát. Aij, i = 1, …, 6, j = 1, …, 6, i  j: šestka padne v i-tém a v j-tém hodu Jedná se o nezávislé hody  jevy Aij jsou nezávislé. P(Aij) = (1/6)2(5/6)4 , tj. nezávisle na sobě 2x šestka a 4x něco jiného. Počet jevů Aij se rovná počtu způsobů, kolika lze umístit 2 šestky v 6 hodech, tj. Hledaná pravděpodobnost P = Příklad. Pravděpodobnost, že náhodně vybraný student bude znát učivo, je 0.005. Jaká je pravděpodobnost, že mezi dvaceti vybranými studenty bude: a) právě 5 znalých studentů b) nejvýše 2 znalí studenti a) b)

Příklad. V osudí jsou 2 bílé a 3 černé koule. Vypočtěte pravděpodobnost toho, že: a) vytáhneme 3 koule a budou 2 černé a 1 bílá b) vytáhneme bez vracení jako první černou kouli, pak bílou a nakonec černou. a) Nezávislé tahy b) Závislé tahy

Cvičení. 1. Mějme pět vstupenek po 100 Kč, tři vstupenky po 300 Kč a dvě vstupenky po 500 Kč. Vyberme náhodně tři vstupenky. Určete pravděpodobnost toho, že: a) alespoň dvě z těchto vstupenek mají stejnou hodnotu b) všechny tři vstupenky stojí dohromady 700 Kč. 2. Z celkové produkce závodu jsou 4% zmetků a z dobrých je 75% standardních. Určete pravděpodobnost, že náhodně vybraný výrobek je standardní. 3. Z výrobků určitého druhu dosahuje 95% předepsanou kvalitu. V určitém závodě, který vyrábí 80% celkové produkce, však předepsanou kvalitu má 98% výrobků. Mějme náhodně vybraný výrobek předepsané kvality. Jaká je pravděpodobnost, že byl vyroben ve výše uvedeném závodě? 4. Menza zakoupila 12 chladniček z 1. závodu, 20 z 2. závodu a 18 z 3. závodu. Pravděpodobnost, že chladnička je výborné jakosti, pochází-li z 1.závodu je 0,9, z 2.závodu 0,6 a z 3.závodu 0,9. Jaká je pravděpodobnost, že náhodně vybraná chladnička bude výborné jakosti? 5. Narozeninový problém I. Spočítejte pravděpodobnost, že žádní dva lidé z patnáctičlenné skupiny nemají narozeniny ve stejný den roku. Ignorujte 29.únor. 6. K síti je připojeno 14 nových a 6 starších počítačů. Pravděpodobnost bezchybného provozu u nových počítačů je 0.9, u starších 0.8. Jaká je pravděpodobnost, že a) student bude pracovat bez poruchy b) tento student pracuje u nového počítače?