Parní (uhelné) elektrárny

Slides:



Advertisements
Podobné prezentace
Škola Střední odborné učiliště a střední odborná škola Hustopeče, Masarykovo nám. 1 AutorIng. Ivana Bočková Číslo NázevKotle ve vytápění Téma hodinyKotle.
Advertisements

Anotace: Materiál je určen pro 1. ročník studijního oboru Provoz a ekonomika dopravy, předmětu Zbožíznalství, inovuje výuku použitím multimediálních pomůcek.
VÝZNAMNÉ NEKOVY. VODÍK značka H latinský název Hydrogenium 1 1 H (1p +, 1e - ) nejrozšířenější izotop tvoří dvouatomové molekuly H 2 Obr. 1: atom vodíku.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Elektrická kamna 2.
Název školy: Základní škola Městec Králové Autor: Ing. Hana Zmrhalová Název: VY_32_INOVACE_06_CH9 Číslo projektu: CZ.1.07/1.4.00/ Téma: PALIVA Anotace:
Střední průmyslová škola a Střední odborné učiliště Uničov, Školní 164.
Tepelné motory. Struktura prezentace úvod pokus otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Stroje a zařízení pro výrobu a přenos energií 3.Přednáška BW06/56 – STAVEBNÍ STROJEIng. Svatava Henková, CSc.
SPALOVACÝ MOTORY – DIESELOVÉ. OBSAH Úvod Vynález dieselového motoru
Projekt MŠMTEU peníze středním školám Název projektu školyICT do života školy Registrační číslo projektuCZ.1.07/1.5.00/ ŠablonaIII/2 Sada09 AnotaceTechnické.
Vytápění Teplárny. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo materiálu:
E NERGETICKÉ VYUŽITÍ KOMUNÁLNÍCH ODPADŮ JAKO NÁSTROJ PRO PLNĚNÍ PLÁNU ODPADOVÉHO HOSPODÁŘSTVÍ Projekt ZEVO Chotíkov E NERGETICKÉ VYUŽITÍ KOMUNÁLNÍCH ODPADŮ.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. Marcela Koubová. Dostupné z Metodického portálu ISSN Provozuje.
Obsah Generátor střídavého proudu Trojfázová soustava střídavého napětí Transformátor Přenos elektrické energie Střídavý proud v energetice 1.
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost Projekt:
VY_32_INOVACE_04_19_Tepelné elektrárny. Anotace: Prezentace může sloužit jako výkladové učivo Autor: Mgr. Lenka Kajabová Předmět: Chemie Očekávaný výstup:
Projekt MŠMTEU peníze středním školám Název projektu školyICT do života školy Registrační číslo projektuCZ.1.07/1.5.00/ ŠablonaIII/2 Sada 18 AnotaceSeznámení.
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/
Elektrotechnická měření Dimenzování sítí nn - PAVOUK 2.
Vytápění Úprava vody. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo materiálu:
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/
Projekt MŠMTEU peníze středním školám Název projektu školyICT do života školy Registrační číslo projektuCZ.1.07/1.5.00/ ŠablonaIII/2 Sada 18 AnotaceSeznámení.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. Marcela Koubová. Dostupné z Metodického portálu ; ISSN Provozuje.
Určeno pro:žáky 2.ročník středních škol Vzdělávací obor: Zeměpis Tematický okruh: Česká republika Téma: Česká republika – průmysl Jméno autora: Mgr. Tomáš.
Projekt MŠMTEU peníze středním školám Název projektu školyICT do života školy Registrační číslo projektuCZ.1.07/1.5.00/ ŠablonaIII/2 Sada 36 AnotaceSíťový.
SPALOVACÍ MOTORY. Jsou to stroje (tepelné motory), ve kterých se přeměňuje tepelná energie vzniklá hořením paliva na energii pohybovou. Palivo spalují.
© IHAS 2011 Tento projekt je financovaný z prostředků ESF prostřednictvím Operačního programu Vzdělávání pro konkurenceschopnost a státního rozpočtu ČR.
STROJOVNA.
Transformátory.
Účinnost různých systémů ukládání elektrické energie
Základy automatického řízení 1
Elektrické stroje točivé
Termika – Fotovoltaika
ELEKTRÁRNY.
Výroba elektrické energie - obecná část
Stroje a zařízení – části a mechanismy strojů
TEPELNÉ MOTORY.
Elektroenergetika úvod do předmětu.
Fyzika – Tepelná elektrárna
Výpočet tepelného schématu RC oběhu s přihříváním páry.
Ropa.
Snížení nákladů na vytápění budov
ESZS Přednáška č.9.
Vzduch VY_32_INOVACE_1A_15 Číslo projektu: CZ.1.07/1.4.00/
Výukový materiál zpracován v rámci projektu
Pístové kompresory VY_32_INOVACE_21_416
ELEKTROTECHNICKÉ MATERIÁLY
Pístové spalovací motory
Znečištění ovzduší Obr. 1
VYTÁPĚNÍ MÍSTNÍ, ÚSTŘEDNÍ, DÁLKOVÉ, CZT vypracovala: Ing
Teplovodní otopné soustavy Vypracovala: Ing
ESZS Přednáška č.4 Tepelný výpočet RC oběhu
Netradiční zdroje elektrické energie
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/
Vytápění Mechanické odvaděče kondenzátu
USMĚRŇOVAČE V NAPÁJECÍCH OBVODECH
Autor : Mgr. Terezie Nohýnková Vzdělávací oblast : Člověk a příroda
Změny skupenství Výpar, var, kapalnění
Seminář k tématice: Nevyjmenované zdroje a odpojování od CZT
Důlní požáry a chemismus výbušniny
Domovní rozvody * hlavní domovní vedení * * odbočky k elektroměrům *
Výroba pelet z biomasy v Habrech
Emise jemných částic Helena Hnilicová.
NÁZEV ŠKOLY: S0Š Net Office, spol. s r.o, Orlová Lutyně
Tepelné motory Motory s vnějším spalováním parní stroj parní turbína
Dolomitické vápno a stabilizace popílků
Neživá příroda - vzduch
E1 Přednáška č.5.
Základy chemických technologií
Transkript prezentace:

Parní (uhelné) elektrárny

Rozdělení parních elektráren 1. Podle účelu a) elektrárny - slouží pouze k výrobě elektrické energie b) teplárny - slouží k výrobě elektrické a tepelné energie c) výtopny - slouží pouze k výrobě tepelné energie Pozn. energie v přehledu jsou výstupní, nejsou uvažovány energie pro vlastní spotřebu 2. Podle turbíny a) kondenzační - slouží pouze k výrobě elektrické energie b) odběrová - teplárny c) protitlaká - teplárny

Celkový pohled (Elna Prunéřov)

Základní tepelné schéma animace 1 animace 2 přehřívák páry okruh páry parní turbína parní kotel generátor  okruh uhlí kondenzátor předehřívák napájecí vody okruh chladící vody okruh napájecí vody čerpadlo napájecí vody

Strojovna

Základní tepelné schéma Tušimice 2 * ventilátorové mlýny (6) * mechanické a termické mletí * hořáky (6 x 3) * promíchání spalovacího vzduchu s práškovým palivem * plynové hořáky (6) pro najíždění a stabilizaci UHLÍ O2 1100 °C 300 °C (150 °C)

* ventilátorový mlýn * vířivý hořák * plynové hořáky (pro zapálení a stabilizaci)

okruh strusky a popílku okruh paliva okruh páry okruh napájecí vody okruh chladící vody okruh spalin okruh strusky a popílku

Hlavní okruhy a části 1. Okruh paliva 2. Kotel * těžba uhlí – lignit z povrchových dolů * úprava uhlí - propírka, separace, drcení * přeprava paliva do elektrárny – železnice, dopravník * skládkování paliva – předepsaná minimální zásoba * přeprava paliva ke kotli a jeho úprava - separace, drcení, mlýny, sušení * spolu se vzduchem je uhelný prášek vháněn do hořáků (prášková ohniště) 2. Kotel * práškový - parní kotel pro hnědé uhlí, vhodný pro velké výkony * fluidní kotel - vyšší účinnost spalování, nižší obsah škodlivin v kouřových plynech

Složení paliva Hnědé uhlí (Tušimice 2) - výhřevnost: 9,75 MJ/kg - voda: 31 % - popelovina: 41 % - hořlavina: C, H, S - spotřeba bloku 200 t/h

Těžba uhlí Mocnost uhelné sloje 25 – 35 m Nadloží až 120 m

Parní kotel V současné době se používají průtlačné (obrázek bubnový) granulační trubkové kotle: * předehřátá voda je vháněna do trubek kotle, které jsou u stěn kotle * v trubkách vzniká sytá pára * pro zvýšení energie páry se sytá pára prostřednictvím spalin dále ohřívá, vzniká ostrá pára s potřebnými parametry * parametry páry (Tušimice 2) : * teplota do vt turbíny - 575 oC tlak do vt turbíny - 18,1 MPa

Membránová stěna

Bubnový a průtlačný kotel Moderní tepelný okruh

Elektrárna Prunéřov II po plánované rekonstrukci, dokončení 2015

3. Parní turbína slouží k přeměně energie páry na mechanickou energii rotoru. * z důvodu vyšší účinnosti rozdělena do více bloků: - vysokotlaký stupeň - mezipřihřátí na původní teplotu - středotlaký stupeň - nízkotlaký stupeň * ze středotlakého a nízkotlakého stupně jsou vyvedeny regenerační odběry pro ohřev napájecí vody, čímž se zvyšuje účinnost cyklu.

Vysokotlaký a středotlaký díl parní turbíny Detail – vysokotlaký díl

Nízkotlaký díl parní turbíny

Turbína Tušimice při rekonstrukci

Turbína Tušimice při rekonstrukci

nízkotlaký díl středotlaký díl vysokotlaký díl

Strojovna elektrárna Prunéřov II po plánované rekonstrukci

Strojovna elektrárna Prunéřov II po plánované rekonstrukci

4. Kondenzátor - slouží k přeměně páry na vodu Do kondenzátoru přichází pára z turbíny o teplotě zhruba 400C. V trubkách kondenzátoru proudí chladící voda. Při ochlazení páry dochází ke kondenzaci, vzniká opět napájecí voda – kondenzát, který má teplotu asi 300C. Při změně skupenství vzniká podtlak (4kPa), který vysává páru z turbínu. Je umístěn pod turbínou.

5. Okruh napájecí vody – začíná v kondenzátoru a končí v parním kotli. Před vstupem do parního kotle je nutný: * ohřev napájecí vody – před vstupem do kotle má voda tlak 18,1 MPa a teplotu 2580C (Tušimice 2). Ohřev vody je více stupňový (nízkotlaké vysokotlaké stupně). Tím se zvyšuje účinnost cyklu. * snížení obsahu plynů - odplyňovák 6. Okruh chladící vody – chladící voda umožňuje kondenzaci páry v kondenzátoru a) otevřený okruh - voda pro chladící okruh se odebírá z řeky a po průchodu kondenzátorem se opět do řeky vrací. b) uzavřený okruh – chladící voda proudí z kondenzátoru do chladících věží a ochlazuje se protitahem vzduchu - nucené proudění vzduchu - přirozeným tahem vzduchu

6. Okruh vzduchu a kouřových plynů a) okruh vzduchu - vzduch umožňuje hoření paliva v kotli. Pro kvalitní hoření musí být dodržen obsah vzduchu v palivu. Před vstupem do kotle se vzduch předehřívá. b) okruh spalin - spaliny z kotle předávají svou energii syté páře v přehříváku a tím dochází i k ochlazování spalin na teplotu zhruba 1600C. Spaliny zatěžují životní prostředí: * popílek * oxid uhličitý * oxid siřičitý * oxidy dusíku * aromatické uhlovodíky * těžké kovy * …

7. Okruh strusky a popela a) popílek ve spalinách tvoří asi 85% tuhého odpadu a má zrnitost m - mm. Odstraňuje v elektrostatických odlučovačích. b) struska tvoří asi 15% tuhého odpadu, jeho zrnitost může být řádově cm. Popílek a struska se ukládá na úložiště (zpravidla v rámci rekultivace). Částečně ho lze využít při výrobě stavebních hmot. Sila popílku a strusky →

Čištění spalin - popílek Pro čištění spalin lze použít několik technologií, které se liší svou účinností a možností použití. * cyklónový odlučovač - spolehlivě zachytí pouze větší částice, vyžaduje dostatečný tah. Účinnost je asi 90%. * tkaninový filtr - má výrazně vyšší aerodynamický odpor  vyšší nároky na elektrickou energii pohonu ventilátoru. Účinnost je přes 99%. * elektrostatický odlučovač – je schopen zachytit i částice o zrnitosti m. Aerodynamický odpor je zanedbatelný. Mají účinnost více než 99,5 %. Pro elektrárny jsou charakteristické velké objemy spalin a používají se zejména elektrostatické odlučovače.

Elektrostatický odlučovač Princip: využití přitažlivých sil mezi elektricky nabitými částicemi prachu a opačně nabitou sběrací elektrodou. Částice prachu jsou nabíjeny v elektrostatickém poli. * do filtru proudí spaliny rychlostí 1 – 2 m/s. * nabíjecí elektrody mají stejnosměrné napětí 40-70 kV, 600 mA * vzniká koróna, popílek při průletu získá záporný náboj * popílek se záporným nábojem je přitahován na srážecí elektrodu * odlučovače jsou řazeny v několika sekcích za sebou * proud je desítky mA, celková spotřeba je zanedbatelná

Odsiřování spalin Technologii odsiřování lze charakterizovat: * značnými objemy spalin * nízkými koncentracemi znečišťujících látek * velkými hmotnostními toky těchto látek Produkce spalin závisí: * druhu paliva černé uhlí výhřevnost 25 MJ/kg sirnatost (0,5 – 0,8) % hnědé uhlí výhřevnost (9 – 12) MJ/kg sirnatost 1,3 % objem spalin pro blok 200 MW hnědé uhlí - 1,1*106 m3/h černé uhlí - 0,7*106 m3/h * přebytku spalovacího vzduchu

Odsiřování spalin Z tabulky vyplívá: Rozdělení metod odsíření: * emise oxidů síry z hnědého uhlí je asi 5 x vyšší než z černého uhlí * pro blok 200 MW jsou emise síry za 1 hodinu 4,53 t/h za 1 rok (5000 hodin) 22 650 t/rok Rozdělení metod odsíření: * podle zpracování činidla pro odsíření - průtočné (činidlo se nevrací zpět do procesu) - regenerační (po úpravě se činidlo vrací zpět do procesu) * podle objemu kapaliny při odsíření - suché procesy - mokré procesy Všechny metody se vyznačují značnými investičními náklady.

Mokrá vápencová metoda Princip metody: spočívá ve vypírání oxidu siřičitého vodní suspenzí vápna nebo vápence při teplotě 600C. 2 CaCO3 + 2 SO2 + O2 + 4 H2O = 2 CaSO4.2H2O + 2CO2 Vedlejším produktem této metody je sádrovec. V první fázi se musí spaliny ochladit na teplotu 600C, po ukončení procesu je třeba spaliny opět zahřát na teplotu okolo 1200C a odvést do komína, případně bez ohřevu přímo odvést do chladících věží Využití sádrovce: * stabilizace popílku na úložišti * stavebnictví – sádra, sádrokarton, přísady do cementu

Vyústění spalin do chladících věží

Princip odsíření

Mokrá vápencová metoda Zhodnocení metody: Výhody: * vysoká účinnost – přes 95% * snížení obsahu dalších nežádoucích produktů - popílek - oxidy dusíku - těžké kovy - aromatických uhlovodíků * výroba energosádrovce (sádra) Nevýhody: * neregenerativní metoda * vysoká spotřeba vápence * vznik „fitračního koláče“, který je odpadním produktem a který nelze dále využít * ekonomika * vysoká spotřeba elektrické energie

Přehled odsíření do roku 2000 Elektrárna Jmenovitý výkon odsiřovaných zařízení, /MWe/ Technologie odsiřování Rok uvedení do provozu Počerady II 2 x 200 Saarberg-Hölter-Lurgi 1996 Počerady I 3 x 200 Hoogoven group (GEESI) 1997 Prunéřov I 4 x 110 Bishoff Mělník II + III 2 x 110 + 1 x 500 GESSI 1998 Mělník I 6 x 55 Asea – Brown Boveri Tisová 2 x 110 Steinmũller Chvaletice 4 x 200 Hitachi (Tampela) 1997-8 Opatovice Hitachi

Tušimice 2

Tušimice 2

Elektrárna Ledvice Výstavba nového bloku 660 MWe s nadkritickými parametry páry * jednoblokové uspořádání * jeden průtlačný kotel s nadkritickými parametry páry * čtyřtělesová parní kondenzační turbína * vyústění spalin do chladící věže Parametry: * elektrický výkon 660 MWe * účinnost 42,5 % * ostrá pára 6000C/28MPa * množství páry 1684 t/hod.

Fluidní spalování Hlavní aspekty rozvoje: Fluidní spalování patří mezi technologie, které se v poslední době výrazně rozvíjejí. Hlavní aspekty rozvoje: * požadavek zvyšování účinnosti – lze dosáhnout účinnost přes 90 % * stále zhoršující se kvalita paliva – nižší výhřevnost, velký podíl síry * vysoké náklady na vyčištění spalin * snižování obsahu oxidů dusíku – spalování při nižších teplotách V současnosti se fluidní kotle využívají zejména pro menší a střední zdroje.

Fluidní kotel Jemně rozemleté látky smíšené se vzduchem nabývají vlastnosti tekutin. Spalování probíhá ve fluidní vrstvě (loži), která je udržována ve vznosu vzduchem a která obsahuje: * drcené uhlí * rozemletý vápenec – váže síru, vzniká síran vápenatý * popel Výhody fluidního spalování: * spalování probíhá pomaleji * fluidní vrstva má lepší přenos tepla  snížení teploty vrstvy pod 9000C  snížení oxidů dusíku. * popel se částečně vrací do fluidní vrstvy odloučení v cyklonu * přebytečný popel se odvádí přepadem z fluidní vrstvy, popel se nesmí spékat ve škváru * nižší náklady na čištění spalin Nevýhody fluidního spalování: * sádra je vázána na popílek a nelze ji dále využít * velká spotřeba vápence

Fluidní kotel

Paroplynový cyklus Samotné plynové turbíny mají malou účinnost (velká energie spalin je nevyužita). Paroplynový cyklus využívá teplo spalin z plynového cyklu ve druhém stupni k výrobě páry. Paroplynový cyklus umožňuje zvýšit účinnost elektrárny o více než 10 % (z 42 % na 55 %). Oproti klasické uhelné elektrárně, mají paroplynové elektrárny nižší emise spalin Pro Českou republiku je problém ve vysoké ceně zemního plynu

Paroplynový cyklus Z technického hlediska se jedná o dva oběhy – parní a plynový. Propojení oběhů je prostřednictvím spalinového kotle, kde je zbytková energie spalin vystupujících z plynového kotle využita pro výrobu páry pro parní turbínu. Tepelný okruh plynové turbíny: * komprese vstupního vzduchu * smísení s palivem ve spalovací komoře * expanze spalin v plynové turbíně Tepelný okruh parní turbíny: * předehřev napájecí vody * odpařování, vývin mokré páry * přehřátí na ostrou páru * expanze v parní turbíně * kondenzace páry na vodu

Paroplynový cyklus

Paroplynový cyklus Parametry paroplynového oběhu v Počeradech, 840 MWe teplota zemního plynu na vstupu spalovací komory 1300C množství plynu na vstupu 29kg/sek teplota spalin ze spalovací komory 576,40C parametry a množství páry na vstupu do VT 5500C 12,8MPa 142kg/sek tepelná účinnost 58,4% vlastní spotřeba 13MWe

PPC Počerady Palivo - dvě plynové turbíny připojeny na generátor, odpadní teplo ze spalovacích komor do dvou kotlů, pára z nich do jedné turbíny. Každý generátor vyrobí přibližně 1/3 celkové elektrické energie Vyvedení výkonu - z blokového transformátoru je vývod jednožilovými kabely 400kV do zapouzdřené rozvodny 400kV

PPC Počerady Propojení nové PPC se stávající PE Počerady

Počerady

Spalovací turbína

Kogenerace, teplárna Hlavní části okruhu (teplárna, velký výkon): je sdružená výroba tepla a elektrické energie. Kogenerace (teplárna) přináší nižší spotřebu paliva a vyšší účinnost cyklu než při oddělené výrobě tepla a elektrické energie. Hlavní části okruhu (teplárna, velký výkon): * plynová turbína - spaluje zemní plyn nebo bioplyn, případně jejich kombinaci. Plyn se mísí se stlačeným vzduchem v předepsaném poměru * plynová turbína je na společné hřídeli s generátorem * spaliny z plynové turbíny vstupují do kotle, kterém: - přehřívají sytou páru, vzniká ostrá pára - ohřevem napájecí vody vzniká sytá pára - předehřívají napájecí vodu * ostrá pára vstupuje do parní turbíny, která je na společné hřídeli s generátorem * pára z turbíny jde do teplárenského okruhu

Kogenerace (menší výkon) schéma

Kogenerace Hlavní části kogenerační jednotky: * spalovací motor - spaluje zemní plyn nebo bioplyn, případně jejich kombinaci. Plyn se mísí se stlačeným vzduchem v předepsaném poměru * spalovací motor je na společné hřídeli s generátorem * spaliny ze spalovacího motoru * ohřívají vodu (topení + TUV) * předehřívají vzduch pro spalovací motor * chladící olej ze spalovacího motoru je ochlazován ohřevem vody, případně pomocí vzduchových chladičů

Mikrokogenerace

Kogenerace

Teplárna - zemní plyn (bioplyn)

Teplo + elektrická energie V současné době existují dva modely: 1. KVET - kombinovaná výroba tepla a elektrické energie. Jedná se převážně o velké celky, mají generátor o výkonu řádově až desítky MW a zásobují teplem rozsáhlou oblast. Jejich hlavní význam je dodávka tepla Výhoda - nižší měrné investiční náklady Nevýhoda - vyšší dopravní ztráty, malá flexibilita 2. Kogenerace - kogenerační jednotky mají místní význam (průmyslové podniky, sídliště, …). Výhoda - generátor může zastávat i funkci záložního zdroje - pracují nepřetržitě v automatickém provozu, vyrobenou elektrickou energii sami spotřebovávají nebo prodávají - operativní provoz Nevýhoda - vyšší měrné investiční náklady

Turbíny pro teplárny   protitlaká turbína odběrová turbína výměník z turbíny jsou výstupy pro páru na výtápění. Poslední výstup je do kondenzátoru. všechna pára projde turbínou, výstupní parametry páry dostačují k vytápění (např. 1MPa, 2300C). Nemusí být kondenzátor.

Teplárna Poříčí Výrobní jednotka - Elektrárna Poříčí II Instalovaný výkon 3 x 55 MW Rok uvedení do provozu 1957 - 1958 Odsířeno od roku 1996 (55 MW - 1.fluidní kotel) 1998 (55 MW - 2 fluidní kotel) odstaveno k 1. 1. 1999 (55 MW)

Teplárna Liberec Palivo - nízko sirný topný olej (směs mazutu a těžkých olejů s obsahem síry pod 1%) Tepelná účinnost - více než 90 % Kotle - K1 (75 t/h), K3 (115 t/h) , K13 (2x16 t/h) - pouze výroba páry pro teplo - K2 (105 t/h) - napájení protitlaké turbíny s generátorem 12MW Provoz - v topné sezóně 70% tepla, 30% dodává spalovna. Ekologie - teplárna nemá odsíření spalin, omezení oxidů síry je výběrem paliva

Materiály Prezentační materiály ČEZ Energetická maturita – sborník přednášek, prezentace Teplárna Liberec – technická příručka Kovosta Fluid a.s. –webové stránky TZB info – webové stránky TEDOM –webové stránky