Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_32 Název materiáluPrůběh funkce.

Slides:



Advertisements
Podobné prezentace
EU-8-58 – DERIVACE FUNKCE XIV
Advertisements

ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Zjištění průběhu funkce
Fakulta životního prostředí Katedra informatiky a geoinformatiky Přednáška 07 Průběh funkce Matematika II. KIG / 1MAT2.
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Základy infinitezimálního počtu
Název školy Střední škola pedagogická, hotelnictví a služeb,
PRŮBĚH FUNKCE Autor: RNDr. Věra Freiová
DERIVACE A MONOTÓNNOST, LOKÁLNÍ EXTRÉMY Autor: RNDr. Věra Freiová Gymnázium K. V. Raise, Hlinsko, Adámkova 55.
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Exponenciální funkce Körtvelyová Adéla G8..
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
9.přednáška vyšetřování průběhu funkce
vlastnosti lineární funkce
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Logaritmické funkce Michal Vlček T4.C.
Derivace funkce. Velikost populace v čase t 0 je N (t 0 ). Velikost populace v čase t  t 0 je N ( t ). Přírůstek populace za jednotku času je [N(t) –
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
2. M Definiční obor, obor funkce. Vrchol paraboly: V=[1;-4]  Minimum funkce (nejnižší bod)  Mění se průběh funkce V=[1;-4]  Minimum funkce (nejnižší.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Předpokládejme, že velikost populace v čase t  0 lze vyjádřit vztahem
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
PRŮBĚH FUNKCE.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Průběh funkce 2. M.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B04 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_31 Název materiáluExtrémy.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_33_18 Název materiáluKondenzátory.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_21_14 Název materiáluDědičnost.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_11_07 Název materiáluJednoduché.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_23 Název materiáluVennovy.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_18 Název materiáluČíselné.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_15 Název materiáluKombinatorika.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_41_19 Název materiáluŠtěpení.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_09 Název materiáluKombinatorické.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_03 Název materiáluVlastní.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_32_11 Název materiáluSytá pára.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_11_10 Název materiáluSložené.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_24 Název materiáluVennovy.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_41_06 Název materiáluRovnoměrně.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_11 Název materiáluZákladní.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_19 Název materiáluZákladní.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Danuše Chrastecká Matematika 2. ročník Lineární lomená funkce ChrM611 říjen 2013 Číslo klíčové.
Předpokládejme, že velikost populace v čase t  0 lze vyjádřit vztahem
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Transkript prezentace:

Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_32 Název materiáluPrůběh funkce AutorMgr. Ivana Stefanová Tematická oblastMatematika Tematický okruhDiferenciální počet Ročník4 Datum tvorbyprosinec 2013 Pokud není uvedeno jinak, použitý materiál je z vlastních zdrojů autora.

Průběh funkce

Cílem je určit základní vlastnosti funkce a načrtnout její graf. Průběh funkce

U každé funkce budeme určovat: 1.definiční obor funkce D f 2.sudost, lichost, periodičnost funkce 3.průsečíky s osami x a y 4.monotónnost funkce 5.extrémy funkce 6.konvexnost, konkávnost, inflexní body 7.limity v krajních bodech definičního oboru 8.graf funkce

Vyšetřete průběh funkce:

 lichá funkce

Vyšetřete průběh funkce: lichá funkce

Vyšetřete průběh funkce:  nemá stacionární body Funkce je klesající: 5. Funkce nemá extrémy. lichá funkce,

Vyšetřete průběh funkce: Funkce je konvexní: Funkce je konkávní: inflexní bod: klesající: lichá funkce, nemá extrémy

Vyšetřete průběh funkce: klesající: lichá funkce, nemá extrémy, konvexní: konkávní: inflexní bod:

Vyšetřete průběh funkce: klesající: lichá funkce, nemá extrémy, konvexní: konkávní: inflexní bod:

Vyšetřete průběh funkce: klesající: lichá funkce, nemá extrémy, konvexní: konkávní: inflexní bod:

Vyšetřete průběh funkce:

 lichá funkce Vyšetřete průběh funkce:

lichá funkce Vyšetřete průběh funkce:

 stacionární body Funkce je klesající: lichá funkce, Vyšetřete průběh funkce: Funkce je rostoucí:

klesající: lichá funkce, Vyšetřete průběh funkce: rostoucí: 5. Funkce má lokální minimum:lokální maximum:

klesající: lokální minimum: lichá funkce, Vyšetřete průběh funkce: rostoucí: lokální maximum: Funkce je konvexní: Funkce je konkávní: inflexní body:

Vyšetřete průběh funkce: klesající:lokální min.: lichá funkce, rostoucí: lokální max.:konvexní: konkávní: inflexní body:

Vyšetřete průběh funkce: klesající:lokální min.: lichá funkce, rostoucí: lokální max.:konvexní: konkávní: inflexní body:

Vyšetřete průběh funkce: klesající:lokální min.: lichá funkce, rostoucí: lokální max.:konvexní: konkávní: inflexní body:

Použité zdroje: 1.Hrubý D., Kubát J. Matematika pro gymnázia – Diferenciální a integrální počet. Vydání 1., Praha, Prometheus, s.r.o., s. ISBN Řídká E., Blahunková D., Chára P. Maturitní otázky – Matematika. První dotisk 1. vydání, Praha, Fragment, s.r.o., s. ISBN (1. vydání, 2007) Použité obrázky: Vytvořeno autorem v programu GeoGebra.