Statistika Statistický soubor, jednotka, znak.
Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru případů a hledá ty vlastnosti jevů, které se projevují v souboru případů. Výchozím pojmem je statistický soubor a jeho prvky se nazývají statistické jednotky. Statistické jednotky vyšetřujeme z hlediska zvoleného znaku. Znak, jehož hodnoty se liší číselnou velikostí se nazývá kvantitativní znak. Znak, jehož hodnoty se liší kvalitou, se nazývá kvalitativní znak. Příklad kvantitativného znaku: výška postavy, hrubý roční příjem Příklad kvalitativního znaku: národnost, pohlaví, povolání. Kvalitativní znak, který může nabývat pouze dvou variant, nazýváme alternativní znak. (pohlaví)
Jméno ◄Statistický znak ◄Hodnota znaku Statistická jednotka ▼ Statistický soubor
Rozdělení četností a jeho grafické znázornění
Příklad 1. Při 20 ti hodech kostkou padla čísla 2, 4, 5, 6, 5, 2, 5, 2, 6, 4, 5, 2, 6, 4, 5, 5, 3, 4, 2, 6 Sestavte četnosti a relativní četnosti do tabulky. Mimo matematiku se relativní četnosti udávají v procentech ,000,250,050,20,30,2
Příklad 2 Ve vzorku 500 diváků je znakem sledovaný televizní program v neděli večer ČT1, ČT2, TV NOVA, PRIMA ProgramČT 1ČT 2TV NOVAPRIMA Četnost Relativní četnost 0,260,160,360,22
Sloupkový diagram neboli histogram
Kruhový diagram
Spojnicový diagram neboli polygon
U skupiny 12 dětí bylo sledováno, kterým barvám hraček dávají přednost. Získaná data byla graficky znázorněna. Výsledek pozorování: červená, žlutá, zelená, žlutá, červená, zelená, červená, červená, modrá, zelená, žlutá, červená. barvaAbsolutní četnost Relativní četnost červená542 žlutá325 zelená325 modrá18 celkem121100
Charakteristiky polohy (úrovně) a variability(proměnlivosti ) znak v dalších úvahách bude znamenat vždy kvantitativní znak nejčastěji užívanou charakteristikou polohy znaku x je aritmetický průměr tj. součet hodnot znaku, zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Počítáme-li aritmetický průměr z tabulky rozdělení četností, musíme ovšem každou hodnotu násobit její četností. Hovoříme pak o váženém aritmetickém průměru. charakteristika polohy (úrovně) znaku je číslo, kolem kterého jsou naměřené hodnoty rozloženy
Pomocí aritmetického průměru lze charakterizovat soubor tehdy, pokud všechny hodnoty mají stejnou důležitost – váhu a mezi hodnotami znaku se nevyskytují extrémně nízké nebo extrémně vysoké hodnoty. Příklady, kdy obvykle používáme aritmetický průměr: - průměrný počet zameškaných hodin na žáka v průběhu školního roku - průměrná denní spotřeba pohonných hmot u podnikových aut Příklady, kdy není vhodné používat aritmetický průměr - hodnocení nárůstu, výnosu… Výsledek získaný AP by měl mít praktický smysl nebo výpovědní hodnotu. Např. můžeme sice vypočítat průměrnou roční teplotu na Borneu a v Grónsku, ale číslo nebude mít výpovědní hodnotu, protože se jedná o teplotně výrazně odlišné oblasti.
Aritmetický průměr Máme čtyři třídy, označené A,B,C,D, počty žáků a průměrné známky z matematiky.Určete průměrnou známku z matematiky ve všech třídách. třídaABCD Průměrná známka z matematiky 2,211,822,332,11 Počet žáků
Aritmetický průměr V souboru 200 lidí se zkoumala průměrná výška postavy. Údaje jsou zachyceny v první tabulce. Druhá tabulka nám ukazuje hodnoty téhož intervalu zaokrouhleného na střed. Vysvětlení: Mění-li se hodnoty kvantitativního znaku po příliš pomalých krocích nebo je hodnot příliš mnoho, sdružujeme je do intervalů. Každý interval je určen horní a dolní hranicí, intervaly mají stejnou délku a střed je pokud možno celé číslo. Výška v cm četnost Výška v cm četnost
Aritmetický průměr Podle údajů z předchozího příkladu, vypočítejte průměrnou výšku postavy. Výpočty jsou provedeny s hodnotami zaokrouhlenými na střed intervalů.
Nejčastěji se setkáváme s případy, kde je váhou hodnot jejich (absolutní) četnost. Příklad: Chovatel andulek si zaznamenal počty snesených vajíček u samiček andulek ve svém chovu. Údaje jsou zaznamenány v tabulce: Počet vajíček Počet andulek
Geometrický průměr Příklad: V průběhu let proběhlo několikrát zdražení využívané služby. Poprvé na dvojnásobek, poté na trojnásobek a nakonec na čtyřnásobek. Jaké bylo celkové zdražení? Jaké bylo průměrné zdražení? Úvaha: Je celkové zdražení možno vypočítat následovně? Tedy =9? Je celkové zdražení 9ti násobek původní ceny? Pak by ovšem průměrné zdražení muselo být 3.
Pokračování příkladu Pokud naše cena byla např. 100,- Kč, pak po prvním zdražení by vzrostla na 200,- Kč (2. 100), po druhém zdražení by vzrostla na 600,- Kč (3. 200), a po třetím zdražení by vzrostla na 2400,- Kč (4. 600). Tedy celkové zdražení je 24 násobek původní ceny.
Geometrický průměr Tam, kde jsou individuální odchylky systematické například v časových řadách, kde data vyjadřují určitý trend, (vývoj v čase) je zajímavější ukazatel průměrný přírůstek (úbytek) nebo průměrné tempo růstu. Jednotlivá období, která sledujeme očíslujeme 0,1,2…,n. Jim odpovídající hodnoty znaků jsou x 0,,x 1,x 2 …,x n. Pak přírůstky za jednotlivá období označíme: Průměrný přírůstek, je Průměrným tempem růstu je myšlen průměr podílů za dvě po sobě následující období, tedy podílů
Příklad k průměrnému přírůstku
Geometrický průměr – průměrné tempo růstu Za průměr volíme geometrický průměr Hodnoty růstu se obvykle udávají v procentech. Jsou-li např. v pěti po sobě jdoucích letech rovny hodnotám: pak je průměrné roční tempo růstu vyjádřeno: 101,3; 108,5; 100,6; 104,2; 102,1
Vývoj kurzu eura vůči české koruně ve dnech 14. – 17. dubna 2015 je zaznamenán v tabulce (údaje jsou v Kč). Jaký byl průměrný denní procentuální nárůst ceny eura v daném období? 14. dubna15. dubna16. dubna17. dubna 27,34527,41527,485
Další důležité pojmy Mod(x)= modus znaku x – hodnota x s největší četností Med(x)= medián znaku x – prostřední hodnota znaku, jsou-li hodnoty x 1,x 2,…x n uspořádány podle velikosti Med(x) =, je-li n liché Med(x) =, je-li n sudé např. máme-li hodnoty znaku x: 1,3,5,8,4, musíme je nejprve seřadit - 1,3,4,5,8 med(x) = tj. hodnota 4 jsou-li hodnoty znaku x: 1,2,5,7,9,10 med(x) = tj. sečteme třetí a čtvrtý člen a vydělíme dvěma, tedy (5+7) : 2 = 6
Modus značíme Mod (x). Medián značíme Med(x) Příklad. Tabulka zachycuje věkové složení členů turistického oddílu. Věk Počet členů Jaký je modus věku členů turistického oddílu? Mod(x) = 64
Směrodatná odchylka = 0,03 Směrodatná odchylka:
Procento- procentní bod Příklad: Každého závodu se účastní 100 lidí. První závod dokončilo 10 % lidí v čase pod 40 minut. Druhý závod dokončilo v čase pod 40 minut 15 % lidí. O kolik procent více lidí dokončilo druhý závod pod 40 minut? Svadí to říct o 5 %. Ale… První závod dokončilo pod 40 minut 10 lidí (10 % ze 100). Druhý závod 15 lidí (15 % ze 100). Nárůst je tedy o 5 lidí; a 5 lidí je o polovinu více, než v prvním závodě. Druhý závod tedy dokončilo v čase pod 40 minut o 50 % více lidí (50 % = polovina). Podle zadání příkladů je nárůst doběhnuvších pod 40 minut 50%. A pokud se nám nechce ani trochu počítat, můžeme říct, že nárůst je 5 procentních bodů. Pozor však, aby to nesvádělo k tomu, že procentních bodů je vždy desetkrát méně (v příkladu máme 50% nárůst a rozdíl 5 procentních bodů). Pokud bychom počty změnili na 20 % v prvním závodě a na 30 % ve druhém závodě, nárůst bude pořád 50%, ale rozdíl bude 10 procentních bodů.