Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Metabolismus erytrocytů
Alice Skoumalová
2
Erytrocyty Struktura: bikonkávní tvar (7,7 μm)
nemají nitrobuněčné organely (membrána obklopující roztok hemoglobinu) Funkce: transport - kyslík do tkání - odstraňování oxidu uhličitého a protonů Doba života 120 dní 4,6-6,2 milionů/μl u mužů, 4,2-5,4 milionů/μl u žen
3
1. Membrána erytrocytů
4
50% lipidová dvojvrstva (fosfolipidy, cholesterol) 50% proteiny
SDS-PAGE: rozdělení podle migrace (proužek 1-7) isolace a analysa (10 hlavních bílkovin) Integrální: Protein vyměňující anionty, glykoforiny A, B, C Periferní: Spektrin, Ankyrin, Aktin Dědičná sferocytóza (AD) deficit v množství spektrinu nebo jeho abnormality přítomnost sferocytů v periferní krvi destrukce při průchodu slezinou
5
2. Hemoglobin 4 polypeptidové řetězce + 4 hemové skupiny
7
Prostorové změny hemu a F-helixu během přechodu mezi T a R-formou hemoglobinu:
9
Saturační křivka hemoglobinu:
10
Autooxidace hemoglobinu:
O2 se váže na Fe2+ Hem - Fe2+- O2 Hem - Fe3+ - O2•- Methemoglobin (Fe3+) není schopen vázat O2 (methemoglobinreduktáza)
11
3. Specifika erytrocytů Nemají organely produkce ATP oxidativní fosforylací opravovat poškozené proteiny a lipidy Jsou vystaveny působení volných radikálů autooxidace hemoglobinu (uvolňování O2•-) PUFA v membráně (peroxidace lipidů) deformace v kapilárách, uvolnění katalytických iontů (peroxidace lipidů)
12
4. Metabolismus erytrocytů
Glukóza: energie Glykolýza: ATP, 2,3-bisfosfoglycerát, NADH Pentosafosfátová dráha: NADPH Syntéza glutathionu (antioxidant) Zánik: globin, Fe2+, tetrapyrol
14
Glukóza je zdroj energie
Přenašeč pro glukosu 12 transmembránových helikálních úseků kanál pro průchod glukózy nezávislý na inzulínu Glykolýza 1. zdroj ATP laktát pouze z glykolýzy 2. dodavatel 2,3-bisfosfoglycerátu (2,3-BPG) (= Rapaport-Luebering shunt) odklonění glykolýzy (nevzniká ATP) vazba na deoxyhemoglobin, stabilizace, usnadnění uvolňování kyslíku v tkáních
15
2,3-bisfosfoglycerát Allosterický efektor hemoglobinu: stabilizuje deoxyhemoglobin snižuje afinitu hemoglobinu ke kyslíku Klinické aspekty: zvýšená produkce u lidí žijících ve vysoké nadmořské výšce a u kuřáků neváže se na fetální hemoglobin (HbF α2γ2), větší afinita ke kyslíku, předávání kyslíku plodu přes placentu
16
Pentosafosfátová dráha
NADPH: redukce oxidovaného glutathionu na redukovaný Glutathion: odstraňuje H2O2 z erytrocytů (za katalýzy glutathionperoxidázy obsahující selen) Mutace glukosa-6-fosfátdehydrogenázy Hemolytická anémie: snížená tvorba NADPH oxidace hemoglobinu, Heinzova tělíska peroxidace lipidů, rozpad erytrocytů Klinika: požití bobů či různých léčiv (primachin, sulfonamidy) 100 milionů lidí deficit aktivity tohoto enzymu (nejčastější enzymopatie)
17
V erytrocytech probíhá syntéza glutathionu
18
Redukovaný glutathion
Důležitý pro ochranu před volnými radikály 1. Kofaktor glutathionperoxidázy (odstraňování H2O2 v erytrocytech) 2. Součást metabolismu kyseliny askorbové (recyklace) 3. Chrání proteiny před oxidací SH-skupin a tvorbou zkřížených vazeb Glutathionperoxidáza Gly Cys Glu Gly Cys Glu Gly Cys SH Glu S S Glutathionreduktáza Redukovaný glutathion (monomer) Oxidovaný glutathion (dimer)
19
Oxyhemoglobin O2 Hemoglobin Superoxid H2O2 Methemoglobin ½ O2+H2O GSH
Superoxiddismutáza Hemoglobin Superoxid H2O2 Kataláza Methemoglobinreduktáza Methemoglobin ½ O2+H2O GSH Pentosofosfátová dráha NADP+ Glutathionreduktáza Glutathionperoxidáza NADPH GSSG H2O GSH-redukovaný glutathion; GSSG-oxidovaný glutathion
20
Autooxidace hemoglobinu 3% hemoglobinu každý den se oxiduje
Konstantní uvolňování O2•- Hem - Fe2+- O2 Hem - Fe3+ - O2•- Hem – Fe2+- O2 Hem - Fe O2•- Methemoglobinreduktáza Redukce methemoglobinu FAD, cytochrom b5 a NADH (z glykolýzy) Methemoglobinemie 1. Dědičná: deficit methemoglobinreduktázy (AR) 2. Abnormální hemoglobin HbM (mutace hemoglobinu, náchylný k oxidaci) 3. Vyvolaná požitím léčiv či chemikálií (sulfonamidy, anilin) Klinika: cyanóza (10% Hb ve formě metHb) léčba podání redukčních činidel (methylenová modř, kyselina askorbová)
21
Superoxiddismutáza (SOD)
Konvertuje O2•- na H2O2 CuZnSOD ve vysoké koncentraci v erytrocytech Odstranění H2O2: 1. Kataláza hemová skupina s Fe3+ katalyzuje dekompozici H2O2 na vodu a kyslík: 2H2O2 2H2O+O2 2. Glutathionperoxidáza redukuje H2O2 na vodu a zároveň oxiduje glutathion H2O2+2GSH GSSG+2H2O Glutathionreduktáza GSSG+NADPH+H+ 2GSH+NADP+ NADPH z pentosafosfátové dráhy (glukóza-6-fosfátdehydrogenáza)
22
α-tokoferol (vitamin E)
v membráně erytrocytů chrání před peroxidací lipidů α-TocH+LO2• α-Toc•+LO2H Kyselina askorbová (vitamin C) v cytoplasmě recykluje α-tokoferol Dehydroaskorbátreduktáza (GSH dependentní) regeneruje askorbát 5. Biologické antioxidanty:
23
Mutace - abnormální struktury hemoglobinu
6. Hemoglobinopatie Mutace - abnormální struktury hemoglobinu V důsledku mutací dochází k tvorbě srpků, změně afinity ke kyslíku, ztrátě hemu či disociaci tetrameru Nejznámější jsou hemoglobin M a S, dále thalasemie Hemoglobin M Náhrada His (E8 neboF7) v podjednotce α nebo β Tyr Silná iontová vazba s Tyr stabilizuje železo ve formě Fe3+ (methemoglobin) Methemoglobin neváže kyslík Thalasemie V důsledku genetických poruch je snížená či chybí tvorba α či β-řetězců (α či β-thalasemie) Existují stovky nevýznamných mutací hemoglobinu, pouze některé z nich mají patologický dopad
24
Hemoglobin S Srpkovitá anémie Agregace patologického hemoglobinu S
25
tzv. lepkavý úsek na povrchu hemoglobinu (Glu - Val)
Hemoglobin S tzv. lepkavý úsek na povrchu hemoglobinu (Glu - Val) deoxyhemoglobin - komplementární místo k lepkavému úseku - polymeraci deoxyhemoglobinu S - vznik dlouhého vláknitého precipitátu V hemoglobinu S je Glu v β-řetězci (zbytek na povrchu hemoglobinu) nahrazen Val; polární zbytek je nahrazen nepolárním Vznikne tzv. lepkavý úsek na povrchu hemoglobinu Na povrchu deoxy (ne však oxy) hemoglobinu je komplementární místo k lepkavému úseku, což vede k polymeraci deoxyhemoglobinu S a vzniku dlouhého vláknitého precipitátu
26
Srpkovitá anémie erytrocyty zkrouceny do tvaru srpků, blokují kapiláry, způsobují zánět a bolest; jsou fragilní a mají tendenci se rozpadat, což vede k anemii v tropech (koincidence s malárií): heterozygotní forma hemoglobinu S - výhoda při nákaze malárií, rozpad erytrocytů přeruší parazitární cyklus
27
7. “Přepínání“ hemoglobinu:
28
8. Glykovaný hemoglobin (HbA1)
Neenzymová glykace na terminální NH2 skupině (Val) β-řetězce Glykovaná frakce asi 5% celkového množství hemoglobinu (úměrná koncentraci glukózy v krvi) Měřením hladiny HbA1 lze získat informace o průběhu diabetes mellitus (odráží hladinu glukózy za posledních několik týdnů); Cukr CHO + NH2 CH2 Protein Cukr CH N CH2 Protein Cukr CH2 NH CH2 Protein Schiffova base Amadoriho přesmyk Glykovaný protein
29
Souhrn: Specifická struktura a funkce erytrocytů Specifika metabolismu (glykolýza, PPP) Ochrana před oxidačním stresem Hemoglobin, hemoglobinopatie
30
Schémata použitá v prezentaci:
Marks´ Basic Medical Biochemistry, A Clinical Approach, third edition, 2009 (M. Lieberman, A.D. Marks) Principles of Biochemistry, 2008, (Voet D, Voet J.G., and Pratt C.W) Color Atlas of Biochemistry, second edition, 2005 (J. Koolman and K.H. Roehm)
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.