Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Skalární součin Určení skalárního součinu
Udává průmět vektoru na druhý vektor, násobený velikostí druhého vektoru. Výsledkem je číslo (skalár) Nezávisí na souřadné soustavě V kartézských souřadnicích platí cos 0 = cos 90= cos 180= +1 -1
2
Vektorový součin Určení vektorového součinu
V kartézských souřadnicích platí = (ax, ay, az) = (bx, by, bz) = (cx, cy, cz)y cx = ay bz - az by cy = az bx - ax bz cz = ax by - ay bx Složka x vektorového součinu závisí na ostatních složkách (y,z) vektorů a,b Pořadí členu s kladným znaménkem je dán cyklickým pořadím vektorů c,a,b
3
Jaký je vektorový součin vektorů
cx = ay bz - az by cy = az bx - ax bz cz = ax by - ay bx Jaký je skalární součin Vektorový součin je kolmý na oba vektory
4
Rychlostní selektor Jaká musí být intenzita E elektrického pole, aby se částice o náboji q = 2e, v magnetickém poli o magnetické indukci 0,1 T působícím kolmo na její rychlost v = m/s, pohybovala přímočaře? Výsledná síla musí být nulová
5
Pohyb nabité částice v homogenním magnetickém poli
Jaký bude poloměr kruhové dráhy elektronu o rychlosti 0,5 c v magnetickém poli s magnetickou indukcí 10-3 T?
6
Pohyb nabité částice v mag. poli
Jaká je frekvence (počet oběhů za jednotku času) elektronu kroužícího rychlostí 0,5 c v magnetickém poli kolmo na směr magnetické indukce o velikosti 10-3 T? frekvence
7
Cyklické urychlovače Maximální dosažitelná energie cyklického urychlovače je závisí na magnetické indukci a poloměru urychlovače Na jakou maximální energii (v MeV) je možné urychlit proton, je-li B=10-2 T a r=5 km? Výsledek je přibližný, neboť vychází z klasického vzorce pro kinetickou energii a proto i byla dosazena klidová hmotnost
8
Dolet těžkých nabitých částic
Empirické vztahy – dosazujeme přímo číselnou hodnotu energie v uvedené jednotce (MeV), výsledek vyjde rovněž přímo v uvedené jednotce (cm). Převodní faktory již jsou zahrnuty v číselných hodnotách koeficientů. Proton se zastaví na delší dráze než částice o stejné energii
9
Dolet těžkých nabitých částic
Určete dolet částice o rychlosti 1,5.107 m/s ve vzduchu. Hmotnost částice a je 4,0026 mu, mu=1, kg Empirický vztah Kinetická energie
10
Dolet těžkých nabitých částic
Kolik iontových párů vznikne za 1 s v detektoru, na který dopadá primární záření o intenzitě 1 Ci = 3, Bq a energii 4,67 MeV? Ionizační energie vzduchu je 34 eV. Pohlcením jedné částice vznikne 4,67 MeV/34 eV = párů, pohlcením 3, částic za 1 s vznikne , = 5, iontových párů za 1 s
11
Ionizační komory (IK) Jak velký elektrický proud protéká ionizační komorou detekující záření o intenzitě 1 Ci = 3, Bq a energii 4,67 MeV? I=Q / t I=e.N0.pave e ... elementární náboj N0 ... počet absorbovaných ioniz. částic za 1 s pave ... průměrný počet iont. párů vytvoř jednou ioniz. č. Dosazením pave = a N0 = 3, s-1 plyne I=2.1, , = 1,63 mA
12
Ionizační komory (IK) Jaký bude pokles napětí na kondenzátoru ionizační komory po absorpci částice o energii 4,67 MeV? Kapacita kondenzátoru je 22 pF. Impulzní IK U=Q/C=e.pave/C U ... změna napětí při průletu jedné částice C ... elektrická kapacita IK Přímým dosazením s použitím znalosti, že k absorpci jedné částice o energii 4,67 MeV ve vzduchu o ionizační energii 34 eV je zapotřebí srážek
13
Čerenkovův detektor Pod jakým úhlem bude vysílat Čerenkovovo záření částice o rychlosti m/s v látce s indexem lomu n = 1,7? Pod jakým maximálním úhlem bude možné pozorovat Čerenkovovo záření v detektoru s indexem lomu n = 1,7?
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.