Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl

Podobné prezentace


Prezentace na téma: "Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl"— Transkript prezentace:

1 Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl
Plzeň, ZS

2 Zvukové vlnění Zvuk – podélné mechanické vlnění mající schopné vyvolat u člověka sluchový vjem, což odpovídá frekvenci 16 Hz – 20 kHz (nižší frekvence – infrazvuk, vyšší – ultrazvuk). Může se šířit pouze v látkovém prostředí. Zdroje zvuku - ladička, kmitání struny, kmitání vzduchového sloupce v dechových nástrojích, kmitání hlasivek… (vždy platí, že kmitání zdroje se šíří ve formě vlnění) Nauka o zvuku – akustika, dále se dělí na fyzikální akustika (vznik a šíření zvuku, fyzikální nástroje) hudební akustika (principy hudebních nástrojů, ladění…) fyziologická akustika (fungování hlasivek a ucha) stavební akustika (zvuk v místnostech, dobrá „akustika“) elektroakustika (záznam a reprodukce zvuku elektronicky) psychoakustika – vliv zvuku na lidskou psychiku, libozvučnost hlasu…

3 Ultrazvuk a infrazvuk Infrazvuk: f<16Hz
Dorozumívání některých živočichů (sloni, hroši, velryby, aligátoři) Bouře, přechody front, zemětřesení Stavební stroje, lokomotivy Neslyšitelný, ale může působit závratě, tlak v uších, infarkt… Ultrazvuk: f>20kHz Ultrazvuk produkují někteří živočichové – netopýři, delfíni, můry…; pes slyší až do 100kHz Elektroakustické měniče využívající piezoelektrický a magnetostrikční jev Defektoskopie – schopnost odrazu ultrazvuku na materiálových přechodech Echolokace – měření vzdálenosti a polohy – sonar (lodě, ponorky, rybolov) Sonografie (zdravotnictví) MHz – odraz ultazvuku od orgánů (plodu v těle matky) Kavitace(čištění) - mechanické narušování povrchu prudkým nárazem kapaliny na předmět kHz … rychlé čištění velkých nečistot kHz … jemnější čištění kHz … velmi jemné čištění (například optiky) Další využití – měření tloušťky materiálu, sterilizace vody, mléka a jiných roztoků, zvlhčování vzduchu, promíchání galvanické lázně či vytváření suspenze, ultrazvuková liposukce …

4 Tón, hluk Podle průběhu výchylky zdroje zvuku na čase (ta udává i časový průběh vzniklého vlnění v daném bodě) rozlišujeme: Základní tón – harmonický (sinusový) průběh – například zvuk ladičky Složený tón – periodický, avšak neharmonický průběh, je jej možné rozložit na řadu harmonických průběhů (harmonická analýza) – například zvuk většiny hudebních nástrojů, ale i samohlásky řeči Hluk – neperiodický průběh, nelze jednoznačně určit frekvenci – různé praskání, skřípání, ale i souhlásky řeči! základní tón složený tón

5 Rychlosti šíření zvuku při pokojové teplotě
Zvuk se může šířit pouze v látkových prostředích, ve vakuu to není možné. každém látkovém prostředí se však zvuk šíří stejně, různá je jak jeho rychlost, tak i to jak moc jej dané prostředí pohlcuje. Silnější vazby mezi částicemi vedou k větší rychlosti. Nejpomaleji se tak zvuk zpravidla šíří ve vzduchu (zde však silně závisí na tlaku, čím je větší, tím je zvuk rychlejší!), další jsou zpravidla kapaliny a nejrychleji se šíří zvuk v pevných látkách Rychlost šíření zvuku závisí i na teplotě, v případě vzduchu se rychlost s nárůstem teploty o 1 stupeň Celsia zvětšuje zhruba o 0,6 m*s-1 Jak rychlost zvuku měřit? Historický způsob - současný světelný a zvukový signál → určení času, o který je zvuk pomalejší → výpočet rychlosti vztahem v = s/t, Nyní např. pomocí rezonance vzduchového sloupce určíme pro danou frekvenci f vlnovou délku λ, rychlost pak spočteme vztahem v = f* λ Látka Rychlost zvuku [m/s] Vzduch Voda Rtuť Beton Led Ocel Sklo Rychlosti šíření zvuku při pokojové teplotě

6 Šíření zvuku Další důležitou otázkou je to, jak se zvuk v daném prostředí pohlcuje. Obecně platí, že k pohlcování zvuku dochází hlavně u nepružných materiálů, typicky plsť, polystyren, plata od vajíček apod. Tyto materiály se používají ke snížení úrovně hluku. Bezodrazová místnost – totální pohlcení zvuku při dopadu na stěny, slouží k akustickým měřením. Dozvuková komora – opačný extrém, nedochází prakticky k žádnému pohlcení, dochází k výraznému prodloužení doby trvání tónu (k tzv. dozvuku) Bezodrazová místnost Dozvuková komora

7 Ozvěna, dozvuk Šíření zvuku je ovlivněno překážkami, na které zvukové vlnění dopadá. Při odrazu od rozlehlé a dostatečně vzdálené překážky (budova, skalní stěna) může dojít ke vzniku ozvěny. Lidské ucho totiž odliší dva zvuky, mezi nimiž uplynulo alespoň 0,1 s. To je zároveň doba potřebná k vyslovení slabiky. Pokud trvá déle než 0,1 s, než se zvuk odrazí od překážky (tj. překážka je alespoň 17 metrů daleko, protože 17*2/340 = 0,1) a vrátí zpět, dochází ke vzniku jednoslabičné ozvěny. Při větších vzdálenostech mohou nastat i ozvěny víceslabičné. Při vzdálenosti menší než 17 m už původní a odražený zvuk nerozlišíme, to se projeví jako dozvuk. V některých prostorách může dozvuk díky několikanásobným odrazům trvat i několik sekund (například v kostele).

8 Základy hudební akustiky
Tón: hudební zvuk Výška tónu: určena frekvencí (1. harmonické) Barva tónu: je dána obsahem a amplitudami vyšších harmonických Hlasitost: součet amplitud všech dílčích harmonických Časový průběh: (trvání tónu) při ubývání hlasitosti se mění barva tónu Kombinace určitých tónů jsou konsonantní (libozvučné) – odpověď nalezl již Pythagoras – jsou to tóny o frekvencích s celočíselným poměrem: Durová stupnice: Základní tón – komorní a (a1): 440Hz Zdroj:

9 Strunné nástroje - housle
U houslí vzniká zvuk kmitáním struny, zvuk je periodický, ale neharmonický → lze jej rozložit na jednotlivé harmonické. Frekvence n-té harmonické je dána účinnou délkou struny l, průměrem struny D, napínací silou struny F a hustotou materiálu ρ vztahem fn = n/(l*D)*√F/(π*ρ). S rostoucí délkou struny tak klesá výška tónu, naopak s rostoucí napínací silou F výška roste (význam pro ladění houslí)!

10 Strunné nástroje - housle
Housle mají 4 různě napínané struny různé tloušťky, které jsou ve své celé délce (prázdná struna) naladěny na tony g (198 Hz), d1 (297 Hz), a1 (440 Hz) a e2 (660 Hz). Stisknutím struny se efektivní délka zkrátí, čímž se zvýší výška tonu. Přes kobylku je navázána těsná mechanická vazba mezi strunou a rezonanční skřínkou (tělo houslí), kde dochází k rezonanci vzduchu (zásadní význam pro kvalitu zvuku houslí) Na barvu tonu má zásadní vliv to, jakým způsobem jsou struny rozkmitávány (zda smyčcem v dané poloze či drnkáním). Speciální případ –tzv. flažolety, nedokonalé přitlačení struny k hmatníku a tím cílené utlumení některých harmonických složek Průběh tonu houslí v závislosti na způsobu rozkmitání struny: a) smyčec b) brnknutí c) kladívko

11 Strunné nástroje - kytara
Fyzikální princip je podobný jako u houslí, kytara má dokonce 6 strun: E (83 Hz), A (110 Hz), d (148 Hz), g (198 Hz), h (247 Hz) a e1 (330 Hz). Zmáčknutím více strun najednou se hrají akordy (souzvuk 3 a více tónů, 3 tony – kvintakord, 4 tony – septakord). Pro tvorbu akordů platí přísná pravidla (zabývá se jimi tzv. harmonie), většinou stavěny na terciovém principu (liší se o tercie, tj. frekvenční poměr mezi jednotlivými tóny je 5:4) V kytarových zpěvnících je u jednotlivých akordů vždy naznačena poloha prstů na hmatníku Speciální případ kytary – dvanáctistrunná (španělská) kytara, má zdvojené struny a bohatší zvuk, užívá se hodně v country music.

12 Strunné nástroje - klavír
Zvuk u klavíru vzniká chvěním strun rozkmitaných dřevěným kladívkem. Jedna klávesa na klaviatuře odpovídá vždy jednomu tónu (bílé klávesy – celé tóny, černé klávesy – půltóny). Ladění klavíru je velmi náročné a nelze jej jednoduše upravit Zesílení a zeslabení tónu se provádí pomocí dusítek jednotlivých strun, tato dusítka jsou ovládána pedály, na které pianista šlape (celkem 3 pedály, každý má jinou funkci) Klavír se používá často jako doprovodný nástroj při sólových vystoupeních, vyrábí se z kvalitního smrkového dřeva. Má velmi široký tónový rozsah, klasické klavíry umožňují hrát přes více než sedm oktáv (mají celkem 52 bílých a 36 černých kláves)

13 Dechové nástroje - klarinet
U dechových nástrojů vzniká zvuk chvěním vzduchového sloupce. Toto chvění však musí být něčím vyvoláno. Základní součástí klarinetu je hubička obsahující plátek z třtinového dřeva, který se rozkmitává dechem hudebníka. Kmitání se šíří ve formě vlnění do nástroje a vzniká chvění vzduchového sloupce. Konkrétní tóny se získávají tím, jaké klapky jsou zmáčknuty a jaké nikoliv, každému tónu odpovídá konkrétní zmáčknutí klapek. Existují různé typy klarinetů podle toho, v jaké tónině jsou naladěny (nejčastější B klarinet, ale i A klarinet, E klarinet apod.) Zajímavost – u B klarinetu dochází díky ladění k tomu, že nota c v notovém zápise se ozývá jako b. Při souhře u písničky, která nebyla napsána speciálně pro klarinet je tudíž nutný přepis do jiné tóniny.

14 Hudební nástroje klasické
Tónem nazýváme zvuk, vznikající v klasických hudebních nástrojích periodickým kmitáním: - pružných dřevěných plátků (klarinety , hoboje) - listových pružin (Harmonika) - umělých či přírodních blan (Tympány, buben) - strun (housle, klavíry, kytary, Loutny, vozembouch) - hudebníkových rtů (Horny, Trubky, pozoun). - nárazem proudu vzduchu na ostrou hranu otvoru (píšťaly u varhan). Další fyzikální děje podílející se na vzniku a trvání tónu v klasických hudebních nástrojích: (Tyto fyzikální děje zesilují některá pásma kmitočtů ) - mechanická rezonance ozvučných skříněk nástrojů - stojaté vlnění vznikající v trubicích dechových nástrojů - Helmoltzovy rezonátory.


Stáhnout ppt "Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl"

Podobné prezentace


Reklamy Google