Patofyziologie kostí a svalů

Slides:



Advertisements
Podobné prezentace
MEZIBUNĚČNÁ KOMUNIKACE
Advertisements

Heterogenita nádorové buněčné populace v diagnostice a léčení
Monomerní G proteiny Alice Skoumalová.
John R. Helper & Alfred G. Gilman Zuzana Kauerová 2005/2006
Mechanismus přenosu signálu do buňky
Selhání imunitní tolerance: alergie a autoimunita
Molekulární biologie nádorů
Regulace tvorby erytrocytů
Základní imunitní mechanismy
Synoviální sarkom Ravčuková B1. , Kadlecová J1. , Štěrba J 2
BUNĚČNÁ SIGNALIZACE - reakce na podněty z okolí
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
Kostní metastázy Možnosti laboratorní diagnostiky
Obecná endokrinologie
TKÁŇ SVALOVÁ Olga Bürgerová.
Energie Informace Energie Látky Informace Látky ROVNOVÁŽNÝ STAV.
Neinvazivní prenatální diagnostika na základě fetálních nukleových kyselin přítomných v mateřské cirkulaci Určení pohlaví u plodu neinvazivně Prof. Ilona.
Steroidní hormony Dva typy: 1) vylučované kůrou nadledvinek (aldosteron, kortisol); 2) vylučované pohlavními žlázami (progesteron, testosteron, estradiol)
AV ČR, Mendelovo muzeum a Vereinigung zur Förderung der Genomforschung pořádají další ročník Mendel Lectures které se konají v Agustiniánském.
Mechanismus přenosu signálu do buňky
. CIVILIZAČNÍ CHOROBY.
Obecná patofyziologie endokrinního systému
Jiří Kec,Pavel Matoušek
Protibakteriální imunita
Muskulární dystrofie typu Duchenne (Becker) B. Ravčuková , J
Patologická anatomie jatečných zvířat
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU
BUNĚČNÁ SIGNALIZACE.
PRIMÁRNÍ IMUNODEFICIENCE
Obecná endokrinologie
Metabolismus, poruchy homeostázy
8. VZNIK REPERTOÁRŮ ANTIGENNĚ SPECIFICKÝCH RECEPTORŮ.
Způsoby mezibuněčné komunikace
Nadledvina - glandula suprarenalis
Řízení imunitního systému Kurs Imunologie. Hlavní histokompatibilní systém (MHC) objeven v souvislosti s transplantacemi starší termín: HLA dvě hlavní.
T lymfocyty J. Ochotná.
Reprodukce buněk Nové buňky mohou v současné etapě evoluce vznikat pouze dělením buněk již existujicích. Dělením buněk je zajišťována: Reprodukce jedinců.
Molekulární biotechnologie č.15 Využití poznatků molekulární biotechnologie. Genová terapie.
Svaly - praktika Svaly Svalová tkáň je typická tím, že je složena z buněk, které jsou nadány schopností kontrakce – pohybu. Sval hladký Sval příčně.
T lymfocyty J. Ochotná.
TOR – target of rapamycin Insulin a insulin-like růstové faktory jsou hlavními aktivátory, působí přes PI3K a proteinkinasu AKT Trvalá aktivace TOR je.
Protiinfekční imunita 2
Histokompatibilní systém
Hormonální akcí rozumíme procesy, ke kterým dochází v cílové buňce poté, co buňka přijme určitý hormon prostřednictvím svých receptorů a zareaguje na.
EXPRESE GENETICKÉ INFORMACE Transkripce
Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex Takeshi Yoshimatsu, Daichi Kawaguchi, Koji Oishi, Kiyoshi.
Fagocytóza = základní nástroj nespecifické imunity (společně s komplementem) fagocytující buňky proces fagocytózy.
Komplementový systém a nespecifická imunita
Metabolismus, poruchy homeostázy
Mikrodeleční syndrom 1p36
Obecná endokrinologie
Variabilita člověka Svaly
T lymfocyty Jan Novák.
Základní typy genetických chorob Marie Černá
Farmakogenetika Cíl Na základě interdisciplinárního integrace znalostí farmakologie a genetiky popsat vliv dědičnosti na odpověď organismu.
Metabolismus, poruchy homeostázy
Patofyziologie kostí a svalů
Genetické poruchy - obecně
Genová terapie II Terapie rakoviny ex vivo Genetický transfer TNF  do lymfocytů infiltrujících do tumoru (TIL) Adoptivní imunoterapie genetickou.
Protinádorová imunita Jiří Jelínek. Imunitní systém vs. nádor imunitní systém je poslední přirozený nástroj organismu jak eliminovat vlastní buňky které.
U jednobuněčných je tělo tvořeno jedinou buňkou  na změnu prostředí reaguje buňka.  tělo mnohobuněčných je tvořeno mnoha specializovanými skupinami.
Herpetické viry-úvod RNDr K.Roubalová CSc..
Mechanismus přenosu signálu do buňky
IMUNOTOXIKOLOGIE Primární imunitní reakce, zánět
A. Mrkvičková, K. Pernicová, R. Řezáč, S. Schniererová, D. Šabatová
Nové trendy v patologické fyziologii
Patofyziologie kostí a svalů
Téma: Tkáně.
Václav Hořejší Ústav molekulární genetiky AV ČR IMUNITNÍ SYSTÉM vs
Nové trendy v patologické fyziologii
Transkript prezentace:

Patofyziologie kostí a svalů 25. 4. 2007

Kostní remodelace Aktivace osteoklastů Resorbční fáze- v důsledku aktivace osteoklastů- krátká Reverzní fáze- kostní povrch je pokryt mononukleáry, ale novotvorba kosti dosud nezačala- krátká Formační fáze- produkce osteblastů ve vlnách v kostní matrix- dlouhá. Tyto buňky se postupně seřadí, proniknou do kosti jako osteocyty a podlehnou apoptóze.

Holick, M. F. J. Clin. Invest. 2006;116:2062-2072 Copyright ©2006 American Society for Clinical Investigation

Signalizace RANK (k předchozímu obrázku) 1. krok: vazba na adaptorový protein TRAF6 pomocí cytoplasmatické domény RANK. TRAF6 operuje jako zásadní adaptor, který podporuje expresi genů specificky určujících aktivaci a diferenciaci osteoklastů. „Downstream“ cíle jsou transkripční faktory jako NF-κB a molekuly , které se účastní v signální transdukci: MAP kinázy (p38 stressová kináza, JNK, ERK); komponenty cesty PI3K/Ak a mTOR (mammalian target of rapamycin). Efekty RANKL na osteoklasty vyplývá z těchto komplexních intracelulárních signálně transdukčních cest.

Molekulární charakteristiky triády OPG/RANK/RANKL RANKL náleží k rodině TNF. Tři izoformy (RANKL1, RANKL2 a RANKL3-solubilní. Membránově vázaný RANK a solubilní e OPG patří do rodiny receptorů pro TNF. OPG je „lákající“ receptor pro zábranu vazby RANKL na RANK.

Receptor aktivátor NF- B, jeho ligand a osteoprotegerin (OPG) Vyřešena interakce mezi osteoklastickými a osteoblastickými liniemi. Účastní se jí tři členové rodiny TNF a receptorů pro TNF. Osteoblasty produkují RANKL, ligand pro receptor aktivátor pro NF- B (RANK) na hemopoetických buňkách. Tento receptor aktivuje jejich diferenciaci a udržuje jejich funkci Osteoblasty produkují a sekretují osteoprotegerin (OPG), receptor, který blokuje interakci RANKL/RANK.

Receptor aktivátor NF- B, jeho ligand a osteoprotegerin (OPG) Stimulátory resorbce kosti zvyšují expresi RANKL v osteoblastech a některé také snižují expresi OPG. Kostní buňky exprimují membránově vázanou formu RANKL, a proto musí osteoblasty vstupovat do fyzikální interakce s osteoklastickými prekurzotry , aby došlo k aktivaci RANK. Solubilní RANKL mohou produkovat aktivované T-lymfocyty. Hladiny OPG rostou s věkem Polymorfismy v genu pro OPG byly asociovány s osteoporotickými frakturami a rozdíly v kostní denzitě.

Parathyroid Hormone Relation Peptide (PTHrP) PTHrP byl objeven jako mediátor syndromu "humoral hypercalcemia of malignancy" (HHM). Při tomto syndromu dochází u různých typů rakovin, obvykle v nepřítomnosti kostních metastáz, k produkci látek podobných PTH, které mohou způsobit biochemické abnormality jako Hypercalcémie Hypofosfatémie Zvýšená exkrece cAMP močí Tyto účinky se podobají účinku PTH, ale objevují se v nepřítomnosti detekovatelných cirkulujících hladin PTH.

Genetické rodiny PTH a PTHrP: PTHrP, PTH and TIP39 jsou zřejmě členy jedné genetické rodiny. Jejich receptory PTH1R a PTH2R jsou 7 transmembránovými G protein-coupled receptory.

Ligand pro receptor activator nuclear factor- kapa B ligand (RANKL) a osteoprotegrin (OPG) jako konečné efektorové cytokiny u maligních nemocí skeletu (k předchozímu obrázku). 1) Interakce RANKL s RANK podporuje diferenciaci a aktivaci osteoklastů 2) Aktivované osteoklasty způsobují humorální hyperkalcémii u malignit, osteolytických metastáz, patologických fraktur a u bolestí spojených s malignitou 3) OPG funguje jako receptor, který neutralizuje RANKL, čímž zabraňuje jeho vazbě s RANK. 4) Mnohé růstové faktory, cytokiny a hormony konvergují na úrovni RANKL a OPG a regulují diferenciaci a aktivaci osteoklastů. Il-1 a TNF podporují produkci RANKL a OPG, zatímco PTH, PTHrP a glukokortikoidy podporují produkci RANKL, ale snižují produkci OPG 5) V malém rozsahu jsou IL-1 a TNF schopny modulovat diferenciaci a aktivitu osteoklastů nezávisle na RANKL a RANK.

Poměr ligandu pro receptor activator nukleáního faktoru kapaB (RANKL) k osteoprotegrinu (OPG) u pacientů s maligním kostním onemocněním Normální stromální buńky zajišťují stabilní poměr RANKL/OPG, který je nutný pro adekvátní kostní remodelaci. Stromální buňky odvozené z obrovských tumorózních buněk zvýšeně exprimují RANKL, což má za následek zvýšení poměru RANKL/OPG s následným excesivním vývojem velkých polynukleárních osteoklastů. Myelom a některé formy karcinomu prsu produkují PTHrP, který indukuje RANKL a inhibuje OPG, což favorizuje osteolýzu a hyperkalcémii během maligního onemocnění. Opačný vývoj u rakoviny prostaty, který favorizuje spíše možnost rozvoje osteoblastického potenciálu.

OPG/RANK/RANKL jako společný efektor v kosti, imunitním systému a v cévním systému (k předchozímu obrázku. OPG, RANK a RANKL jsou selektivně produkovány četnými buněčnými typy v různých tkáních: lymfocyty, osteoblasty a endoteliální buňky. RANKL funguje jako faktor přežití pro dendritické buňky a jako osteoklastogenetický faktor po vazbě na RANK. OPG inhibuje osteolýzu a blokuje interakci RANKL/RANK. OPG/RANKL/RANK triáda se považuje za osteoimmunomodulační komplex.

Produkce látek resorbujících kost nádorem Produkce látek resorbujících kost nádorem. Nádorové buňky uvolňují proteázy, které mohou podporovat progresi tumoru přes nemineralizovanou matrix. Tyto buňky mohou uvolňovat také PTHrP, cytokiny, eicosanoidy a růstové faktory ( EGF), které mohou stimulovat osteoblastické stromální buňky k tvorbě cytokinů jako M-CSF a RANKL. RANKL se může vázat na svůj receptor RANK na osteoklastických buňkách a zvyšovat produkci a aktivaci mnohojaderných osteoklastů, které jsou schopny resorbovat mineralizovanou kost.

Table 1. Hypercalcemic Disorders A. Endocrine Disorders Associated with Hypercalcemia Endocrine Disorders with Excess PTH Production Primary Sporadic hyperparathyroidism Primary Familial Hyperparathyroidism MEN I MEN IIA FHH and NSHPT Hyperparathyroidism - Jaw Tumor Syndrome Familial Isolated Hyperparathyroidism Endocrine Disorders without Excess PTH Production Hyperthyroidism Hypoadrenalism Jansen's Syndrome B. Malignancy-Associated Hypercalcemia (MAH) MAH with Elevated PTHrP Humoral Hypercalcemia of Malignancy Solid Tumors with Skeletal Metastases Hematologic Malignancies MAH with Elevation of Other Systemic Factors MAH with Elevated 1,25(OH)2D3 MAH with Elevated Cytokines Ectopic Hyperparathyroidism Multiple Myeloma C. Inflammatory Disorders Causing Hypercalcemia Granulomatous Disorders AIDS D. Disorders of Unknown Etiology Williams Syndrome Idiopathic Infantile Hypercalcemia E. Medication-Induced Thiazides Lithium Vitamin D Vitamin A Estrogens and Antiestrogens Aluminium Intoxication Milk-Alkali Syndrome Produkce PTHrP regulovaná růstovým faktorem (GF) v tumorózních stavech. Tumorózní buňky jsou schopny být na vzdálenost (mimo kost stimulovány autokrinními růstovými faktory ke zvýšené produkci PTHrP. Ten se dostává cirkulací do kosti a podporuje resorbci kosti. Metastatické tumorové buńky v kosti jsou schopny sekretovat PTHrP, podporující resorbci kosti a sekreci parakrinních růstových faktorů, které dále udržují produkci PTHrP.

Svalové dystrofie (MD) skupina vrozených nezánětlivých progresivních svalových onemocnění bez abnormalit centrálního nebo periferního nervstva. Postihuje svaly definitivní degenerací svalových vláken bez morfologických aberací.

MD U většiny typů MD se rozvíjí mnohočetná progresivní svalová slabost v proximálně distálním směru; u části izolovaná slabost distální části dolních končetin. Rozvoj strukturálních kontraktur měkkých tkání a deformace páteře. Kontraktury typu equinovarus, postupně rigidní. Kontraktury se horší, pokud je pacient upoután na křeslo. Rychle se rozvíjející skolióza. FVC se snižuje, další omezení kardiovaskulárního systému, špatná prognóza quod vitam.

Klasifikace MD Genetické abnormality v genech pro specifické svalové bílkoviny (dystrofin).Klasifikace podle klinických fenotypů, patologie a způsobu dědičnosti. Dědičnost: gonosomálně vázaná, autosomálně recesivní, autosomálně dominantní. Dědičné MD Gonosomálně vázané MD Beckerova Duchennova Emery-Dreifussova

Klasifikace MD Autosomálně dominantní Facioscapulohumerálníl Distální Okulární Okulofaryngeální Autosomálně recesivní – forma ramenního pletence

Genetické defekty a dystrophin U formy vázné na X (Duchennova a Beckerovy dystrofie) je defekt na krátkém raménku chromosomu X. Hoffman a spol. identifikovali defektní lokus v oblasti Xp21 (2 milióny bp). Gen kóduje Dp427, komponentu cytoskeletu buněčné membrány. Dystrofin se exprimuje také v hladké svalovině, v srdeční svalovině a v mozku.

Genetické defekty a dystrofin Defekty v exonech a v promotorové oblasti, které mění rychlost transkripce, vedou k tvorbě nestabilního, neefektivního proteinu, např. u Duchennovy MD. Narušení translace proteinu (mutace typu frame shift) vede k tvorbě proteinů s nižší molekulární hmotností, které jsou méně altivní a vedou k rozvoji Beckerovy MD. Defekt Emery-Dreifussovy MD na Xq28 lokusu. Část případů má zřejmě autosomálně dominantní dědičnost. Autosomálně recesivní MD s poruchou ramenního pletence má defekt na 13q12 lokusu. Autosomálně dominantní Facioskapulohumerální MD s defektem na 4q35 Distální MD s defektem na 2q12-14

Patofyziologické aspekty MD Mnoho proteinů se účastní v komplexních interakcích membrány svalové buňky a extracelulární matrix. Pro stabilitu sarkolemmy jsou důležité dystrofin a s dystrofinem asociované glykoproteiny (DAG). Gen pro dystrofin leží na X chromosomu blízko lokusu p21 a kóduje bílkovinu Dp427 s 3685 aminokyselinami. Dystrofin představuje jen asi 0,002% z celkového množství bílkovin v příčně pruhovaném svalu, ale má zásadní podíl na udržování integrity membrány svalové buńky.

Patofyziologické aspekty MD Dystrofin agreguje jako homotetramer v oblasti kostamer kosterních svalů a dobře asociuje s aktinem v N-terminální části aktinu a s DAG komplexem v C-terminální části. Tvoří tak stabilní komplex, který vstupuje do interakce s lamininem v extracelulární matrix. Výpadek funkce dystrofinu vede k buněčné nestabilitě v těchto vztazích s progresivním oslabením intracelulárních komponent. To vede k vysokým hladinám kreatin fosfokinázy (CPK) u pacientů s duchennovou MD. Méně aktivní formy dystrofinu mohou ještě fungovat jako sarkolemmální kotva, ale nejsou už tak efektivní jako regulátor vstupu do buňky, protože dovolí poškození intracelulárních komponent. To je případ klasické Beckerovy dystrofie. U Duchennovy i Beckerovy MD dochází k postupnému zániku svalových buněk a k invazi makrofágů. Na membránách dystrofických buněk dochází k expresi HLA antigenů I. Třídy. Tyto buňky se stávají cílem pro útok T lymfocytů.

Lokalizace kostamer v buňkách kosterního svalu Ervasti, J. M. J. Biol. Chem. 2003;278:13591-13594

Síť proteinů kostamer Ervasti, J. M. J. Biol. Chem. 2003;278:13591-13594

Patofyziologické aspekty MD Aktivovaný komplement a cytotoxické T-lymfocyty byly identifikovány v dystrofických svalech.časem dochází k náhradě mrtvých svalových buněk fibrózně tukovým infiltrátem, což se klinicky jeví jako pseudohypertrofie postiženého svalu. Nedostatek funkčních svalových jednotek způsobuje slabost a vede ke kontrakturám. U jiných typů MD dochází k defektům v komplexu DAG v důsledku mutací v autosomech. Rozdíly ve fenotypu.