Kvadratická rovnice 1 Mgr. Martin Krajíc 2.5.2013 matematika 1.ročník rovnice a nerovnice Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková.

Slides:



Advertisements
Podobné prezentace
Kvadratické nerovnice
Advertisements

Směrnicový a úsekový tvar přímky
Úplné kvadratické rovnice
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Polohové úlohy 1 Mgr. Martin Krajíc matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková.
Vzájemná poloha přímek daných obecnou rovnicí
Nerovnice s neznámou pod odmocninou
2.2.2 Úplné kvadratické rovnice
Vzájemná poloha přímek daných parametrickým vyjádřením
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektuCZ.1.07/1.5.00/ Název projektuEU peníze středním školám Masarykova OA Jičín Název školyMASARYKOVA OBCHODNÍ.
Vypracovala Daniela Helusová Mt – Ov pro SŠ
Výpočet kořenů kvadratické rovnice
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
„EU peníze středním školám“ Název projektuModerní škola Registrační číslo projektuCZ.1.07/1.5.00/ Název aktivity III/2 Inovace a zkvalitnění výuky.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_68.
KVADRATICKÉ ROVNICE. Název projektuModerní škola Registrační číslo projektu CZ.107/1.500/ Název aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím.
Kvadratická nerovnice Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková.
Soustava tří rovnic o třech neznámých
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
2.2 Kvadratické rovnice.
Neúplné kvadratické rovnice
Soustava lineárních nerovnic
Nerovnice v podílovém tvaru
Gymnázium Jiřího Ortena KUTNÁ HORA
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Miluše Nováková. Dostupné z Metodického portálu ; ISSN Provozuje.
STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, Neratovice, tel.: , IČO: , IZO: Ředitelství.
Slovní úlohy řešené pomocí lineárních a kvadratických rovnic
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Rovnice v součinovém a podílovém tvaru
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Parametrické vyjádření přímky v prostoru
Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice
Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice
Nerovnice v součinovém tvaru
Ekvivalentní úpravy rovnic
Nerovnice s absolutní hodnotou
Rovnice s absolutní hodnotou
Vztahy mezi kořeny a koeficienty kvadratické rovnice
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Polohové úlohy 2 Mgr. Martin Krajíc matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková.
Soustava dvou rovnic o dvou neznámých – dosazovací metoda
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
KVADRATICKÉ NEROVNICE
Repetitorium z matematiky Podzim 2012 Ivana Medková
(řešení pomocí diskriminantu)
Kvadratické nerovnice
Soustava lineární a kvadratické rovnice
Kvadratická rovnice 2 Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková.
Parametrické vyjádření přímky v rovině
Ryze kvadratická rovnice
Soustava dvou rovnic o dvou neznámých – sčítací metoda
Kvadratická rovnice.
Materiály jsou určeny pro výuku matematiky: 3. ročník, Ekonomické lyceum Učivo v elektronické podobě zpracovala Mgr. Iva Vrbová.
Rovnice s neznámou pod odmocninou
MATEMATIKA Kvadratická rovnice. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT.
R OVNICE A NEROVNICE Kvadratické rovnice – Algebraické způsoby řešení I. VY_32_INOVACE_M1r0108 Mgr. Jakub Němec.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Kvadratické nerovnice
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
Neúplné kvadratické rovnice
2.1.1 Kvadratická funkce.
Výukový materiál zpracován v rámci projektu EU peníze školám
KVADRATICKÁ ROVNICE Jitka Mudruňková 2012.
Kvadratické rovnice.
Transkript prezentace:

Kvadratická rovnice 1 Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková organizace Nad Špejcharem 574, Semily, Česká republika Registrační číslo projektu: CZ.1.07/1.5.00/ Název projektu: Moderní škola

Kvadratická rovnice Kvadratická rovnice s jednou neznámou je každá rovnice ve tvaru: ax² + bx + c = 0... a,b,c ɛ R a ≠ 0 kvadratický člen lineární člen absolutní člen neznámá x je v druhé mocnině pokud by a = 0, vznikla by lineární rovnice

Kvadratická rovnice Typy kvadratických rovnic: a) Obecná kvadratická rovnice (úplná) - na levé straně rovnice je úplný kvadratický trojčlen: ax² + bx + c = 0 b) Ryze kvadratická rovnice – lineární člen je nulový: ax² + c = 0 c) Kvadratická rovnice bez absolutního členu – absolutní člen je nulový: ax² + bx = 0

Kvadratická rovnice Řešení obecné (úplné) kvadratické rovnice: seřadíme si jednotlivé členy v trojčlenu od nejvyššího stupně mocniny k nejnižšímu: ax² + bx + c = 0 dosadíme do vzorce pro DISKRIMINANT: D = b² - 4ac dopočítáme neznámou x dosazením do vzorce: X 1,2 =

Kvadratická rovnice Vliv diskriminantu na počet řešení kvadratické rovnice: D > 0…rovnice má 2 řešení D = 0…rovnice má 1 řešení D < 0…rovnice má 0 řešení Poznámka: Kvadratické rovnice se záporným diskriminantem lze dořešit v komplexních číslech (naučíte se ve 4. ročníku).

Kvadratická rovnice Př: Řešte rovnici v R: 3x² - 5x + 2 = 0 a = 3 b = -5 c = 2 D = b² - 4ac = (-5)² = 25 – 24 = 1 = 1 x 1,2 = = = = = x = {,1} Diskriminant je kladný, rovnice má v R dvě řešení.

Kvadratická rovnice Př: Řešte rovnici v R: -2x² + 4x - 2 = 0 a = -2 b = 4 c = -2 D = b² - 4ac = 4² - 4.(-2).(-2) = 16 – 16 = 0 x 1,2 = = = = -1 x = -1 Diskriminant roven nule, rovnice má v R jedno řešení. Pokud je diskriminant nulový, vzoreček píšeme zjednodušeně bez odmocniny z diskriminantu.

Kvadratická rovnice Př: Řešte rovnici v R: 5x² + 10x + 8 = 0 a = 5 b = 10 c = 8 D = b² - 4ac = 10² = 100 – 160 = -60 x = Ø Diskriminant je záporný, rovnice nemá v R řešení.

Kvadratická rovnice Př: Řešte rovnici v R: (x + 2)² + (x – 3)(x + 1) = -x x² + 4x x² + x – 3x – 3 = -x 2x² + 3x + 1 = 0 (a = 2, b = 3, c = 1) D = b² - 4ac = 3² = x 1,2 = = = x = {-1, -0,5}

Kvadratická rovnice - příklady Př: Řešte rovnice a na závěr doplňte citát (využijte písmen u správných řešení): Lydie Gigerichová: „ Asi mám mezery v matematice. Kolik je vlastně jednou tolik? Je to 1x tolik nebo 2x tolik? Mám stejně nebo dvakrát víc? Nebo jen…….víc?“ 1) x² + 22x = 504 a) J = {-36, 14}, b) P = {-3, 14} 2) 16x² - 40x – 23 = 0a) Ě = 5 ± √3, b) E = 3) 16x² - 48x + 41 = 0a) D = Ø, b) T = 3 4) (x + 4)² + (x + 8) ² + 20 = (x + 2) ² a) K = Ø, b) N = {-8,-12} 5) x(x - √3) - √3(x – 1) = (5 + √3) a) O = √3 ± 2√2, b) R =Ø 6) + + = - 3a) U = {-9/4, 12}, b) Á = {-3, 14}

Kvadratická rovnice – správné řešení Správné řešení: Lydie Gigerichová: „ Asi mám mezery v matematice. Kolik je vlastně jednou tolik? Je to 1x tolik nebo 2x tolik? Mám stejně nebo dvakrát víc? Nebo jen…………….víc?“ JEDNOU

Kvadratická rovnice– použité zdroje Použité zdroje: MOTTAK. Svatební oznámení: Citáty. [online]. [cit ]. Dostupné z: