Světelná technika Světelné diody.

Slides:



Advertisements
Podobné prezentace
Nové trendy v osvětlovací technice: Indukční světelné zdroje LVD
Advertisements

Žárovka vs. Úsporná zářivka
PRÁCE S KATALOGEM Kódy a jejich význam. -typ korpusu s typem elektrické výzbroje Příklad: 1201 – svítidlo H 152 osazené dvěma 15W úspornými zářivkami.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Elektrotechnická měření Výpočet umělého osvětlení - Wils
 Cíle práce  Seznámení s výpočtem  Cenová rozvaha  Závěr.
Světelná technika Svítidla.
Světelná technika Světelné diody.
Sluneční elektrárna.
Žárovky.
MONITOR.
Info k nové směrnici EuP o osvětlení domácností Havells Sylvania Březen 2009.
Výbojové zdroje světla
Výbojové zdroje světla 2
Laser (Light Amplification by Stimulated Emission of Radiation) zesilování světla stimulovanou emisí záření Tadeáš Trunkát 2.U.
Fotometrie Fotometrie je část optiky, která zkoumá světlo z hlediska jeho působení na zrakový orgán. Veličiny, které určují velikost tohoto působení na.
LCD (Liquid crystal display). Základní informace Tenké a ploché zobrazovací zařízení skládající se z omezeného (velikostí monitoru) počtu barevných nebo.
Přípravek fotovoltaického panelu pro praktickou výuku
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: MIROSLAV MAJCHER Název materiálu: VY_32_INOVACE_17_VOLBA.
PRVKY ELEKTRONICKÝCH OBVODŮ
Světelná technika Svítidla.
PERIFERNÍ ZAŘÍZENÍ ZOBRAZOVACÍ JEDNOTKY OLED – základní principy
Digitální projektory. LCD (Liquid Crystal Display) DLP (Digital Light Processing)
Tento materiál byl vytvořen jako učební dokument projektu inovace výuky v rámci OP Vzdělávání pro konkurenceschopnost VY_32_INOVACE_B3 – 07.
OLED technologie Úvod OLED = Organic Light Emitting Diode
Světelná technika Světelné diody.
Netradiční zobrazovací prostředky
Technika a technické vzdělávání Dalibor Valenta
Výbojové zdroje světla
Výbojové zdroje světla
TYPY POLOVODIČOVÝCH DIOD
Vznik přechodu P- N Přechod P- N vznikne spojením krystalů polovodiče typu P a polovodiče typu N: “díra“ elektron.
Zobrazovací zařízení.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
PRVKY ELEKTRONICKÝCH OBVODŮ
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Žárovka Tepelný zdroj Zdrojem světla je wolframový drát, který má veliký odpor a vysokou teplotu tání (3200 °C) Při přivedení el. proudu se drát zahřeje.
Světlo - - veličiny, jednotky
Monitory Plazma – OLED - SED
Fotočlánky Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického.
Princip laseru Zdrojem energie (např. výbojka) je do aktivního média dodávána energie. Ta energeticky vybudí elektrony aktivního prostředí ze zákl. energetické.
Hardware 5 verze 2.6.
Projekt osvětlovací soustavy Zásady zpracování. 1. Detailní popis využití vybraného prostoru Zvolení alespoň 5 různých prostor z hlediska vykonávaných.
Digitální učební materiál Název projektu: Inovace vzdělávání na SPŠ a VOŠ PísekČíslo projektu: CZ.1.07/1.5.00/ Škola: Střední průmyslová škola a.
Světelná technika Řízení akčních členů. 2 3 Využití elektrických zdrojů světla Veřejné osvětlení Osvětlení v domácnostech Osvětlení v dopravě Průmyslové.
Pořadové číslo projektu CZ.1.07/1.1.18/ „Řemesla s techniky začneme od píky“ Datum vytvoření: Datum ověření ve výuce: Ročník:
MĚŘENÍ LED RNDr. Zuzana Karafiátová MĚŘENÍ LED Pořadové číslo projektu CZ.1.07/1.1.18/ „Řemesla s techniky začneme od píky“ Datum vytvoření:
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky LED osvětlení.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Zářivková svítidla 1.
ZÁŘIVKOVÁ SVÍTIDLA Autor: Pavel Porteš Jsou to nízkotlakové trubice plněné rtuťovými parami, v nichž se ultrafialové záření výboje mění vrstvou luminoforu.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Projektor Číslo DUM: III/2/VT/2/1/12 Vzdělávací předmět: Výpočetní technika Tematická oblast: Hardware.
EU peníze školám Registrační číslo projektu CZ.1.07/1.4.00/ Název projektu Inovace školství Šablona - název Inovace a zkvalitnění výuky prostřednictvím.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Moderní obrazovky Moderní obrazovky.
CZ.1.07/1.5.00/ Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy.
VYUŽITÍ POLOVODIČŮ V PRAXI
Monitory LCD a CRT Projektory Princip a srovnání.
Tato prezentace byla vytvořena
Výbojové zdroje světla
Doutnavka.
ELEKTROTECHNICKÉ MATERIÁLY
MNOHONÁSOBNÉ ODRAZY 1. Činitel vazby 12 svíticí plochy 1 s osvětlovanou plochou 2 2. Činitel vlastní vazby 11 vnitřního povrchu duté plochy 3.
Výstupní zařízení - monitory
Světelná technika Světelné diody.
Teplotní zdroje světla
Fyzika 2.D 17.hodina 01:06:36.
Základní škola Zlín, Nová cesta 268, příspěvková organizace
Výbojové zdroje světla
Světelná technika Světelné diody.
Teplotní zdroje světla
Číslo projektu Číslo materiálu název školy Autor TEmatický celek
Transkript prezentace:

Světelná technika Světelné diody

Světelné diody - LED Co je světelná dioda ? Světelná dioda (LED – Light Emitting Diode ) je polovodičová součástka, která obsahuje přechod PN, který při průchodu elektrického proudu emituje optické záření Princip je znám dvacátých let minulého stolení, první použitelné diody se objevily až v roce 1962, modrá LED až 1993, bílá 1995. Významný rozvoj je zaznamenám zejména v posledním desetiletí  technologický vývoj vede ke snížení cen a zvýšení měrného výkonu .

Konstrukce LED Princip 1. polovodič s přechodem PN 2. reflektor Konstrukce diody se dvěma krystaly 1. polovodič s přechodem PN 2. reflektor 3. keramická destička 4. podložka 5. polokulová čočka Princip: Přiložením stejnosměrného napětí na polovodičový přechod PN v propustném směru dochází v oblasti přechodu k rekombinaci elektron-díra, při které se uvolní množství určité energie, která se vyzáří mimo krystal. Světelné záření je monochromatické, barva je dána použitým materiálem (např. GaAsP – červená barva).

Světelné diody - LED

Světelné diody - LED Bílé světlo: Proč ? Vlnové délky - běžné diody 390-550 nm (zelená modrá) - speciální do 670 nm (červená, oranžová, žlutá) Bílé světlo: Z principu funkce světelné diody nelze získat bílé světlo. Proč ? Vytvoření bílého světla bylo umožněno použitím materiálu polovodiče InGaN (nitrid galium a indium)  modrá LED a upravená technologie výroby. K bílému světlu vedou 2 metody: 1. Klasické přímé míšení světla červené, zelené a modré LED * technologicky náročné * nižší jas * vlivem nerovnoměrného stárnutí jednotlivých čipů nežádoucí posuny barvy * nižší index podání barev

Světelné diody - LED 2. Kombinací modré LED diody a luminoforu * luminoforem, který je buzen světlem modré diody - horší podání barev, Ra = 70 (je potlačena zelená a červená) - energeticky výhodnější * luminoforem, který přeměňuje UV záření do oblasti viditelného spektra (stejný princip jako u zářivky) - lepší podání barev, Ra = 80

Světelné diody - LED Vlastnosti LED diod: * široký rozsah teploty chromatičnosti - teplejší (2 500 – 4 000) K - chladnější (5 000 – 8 000) K * velmi malé rozměry jednoho čipu (několik mm2) * proud jednoho čipu jednotky až stovky mA Rozdělení: malé výkony proud 1-2 mA standardní více než 20 mA výkonové více než 350 mA * světelný tok desítky až stovky lumenů * měrný výkon až 100 lm/W (není konstantní, mění se s teplotou a časem) * svítivost je dána reflektorem * nutný odvod tepla (pro I > 20 mA)

Přednosti světelných diod 1. Geometrické parametry * rozmanitost ve vytváření nových svítidel a světelných přístrojů * malé rozměry, možnost koncentrace světelné energie 2. Elektrické a světelné parametry * malé napájecí stejnosměrné napětí (FELV, případně PELV nebo SELV) * možnost propojování jednotlivých diod do série * okamžité odezvy na změny (pulzní režim) * stmívatelnost * v porovnání se žárovkou energeticky úsporné osvětlení * libovolná poloha * vysoký jas * vysoká účinnost barevných diod (nejsou filtry) * vysoké měrné výkony (předpoklad až 200 lm/W) 3. Kolometrické parametry * lze získat velký počet barev, některé mohou být monochromatické * nízký index podání barev, různé hodnoty teploty chromatičnosti * existují diody zářící v infračerveném nebo ultrafialovém spektru

Nevýhody světelných diod 4. Provozní parametry * vysoká spolehlivost, dlouhá životnost (zatím chybí dlouhodobá měření), vliv okolní teploty životnost, s rostoucí teplotou klesá * minimální údržba * závislost na okolních teplotách (čím nižší teplota, tím lépe) * absence UV a IR záření (kromě speciálních) * mechanické odolnost * speciální svítidla pro rozptýlení nebo koncentraci světla (reflektor je sice součástí diody, jeho význam pro svítidlo je minimální) * vysoká životnost, až 50 000 hodin 5. Vliv na životní prostředí * neobsahují rtuť * část použitých materiálů lze recyklovat Nevýhody světelných diod * vysoká cena * chlazení

Oblasti použití světelných diod * signalizace (náhrada žárovek a doutnavek, dopravní značky, únikové cesty a nouzové osvětlení) * zobrazovací technika a reklamy (dynamické řízení a efekty, světelné tabule, velkoplošné obrazovky) * dálkové ovládání, čtení čárových kódů, optické myši, prosvětlení displejů, … * venkovní osvětlení (osvětlení chodníků a parků, pěší zóny, přechody pro chodce, osvětlení budov, tunely) * osvětlení vnitřních prostorů (veřejné budovy, pracoviště, domácnosti) * zdravotnictví (terapie kožních nemocí, dezinfekce UV zářením)

Náhrada lineárních zářivek trubicovými LED Přestože moderní zářivky patří do energetické třídy A nebo B je varianta jejich náhrady prostřednictví trubicových LED. Záměna se uvažuje zejména u trubic T8 (průměr 26 mm) s klasickým předřadníkem, které jsou v ČR nejpoužívanější. Výhody: * snížení spotřeby – zářivka T8 s klasickým předřadníkem má měrný výkon 75lm/W, LED náhrada 105 lm/W * provoz bez předřadníku * omezení kmitání světla a stroboskopického jevu * nevadí opakované spínání – vhodné při četném spínání * okamžitý náběh světelného toku * provoz při nízkých teplotách – u zářivek klesá účinnost luminoforu * dlouhá doba života – zářivky s indukčním předřadníkem do 10 000 hodin. LED trubice více než 30 000 hodin * zvýšení účinnosti svítidel – příznivější vyzařovací úhel * neobsahují rtuť

Náhrada lineárních zářivek trubicovými LED Nevýhody: * nižší příkon, menší světelný tok – horší odvod tepla (malá chladící plocha čipu) * pokles světelného toku za dobu provozu, zejména při vyšších teplotách * bezpečnost – zejména při použití nových LED trubic do stávajících svítidel * nízký index barevného podání – běžné LED trubice mají Ra = 70, norma pro trvalý pobyt ale udává minimální hodnotu Ra = 80

Porovnání LED trubic s klasickou zářivkou Světelný zdroj Trubicový LED zdroj Zářivka L36/840 s indukčním předřadníkem matná trubice prizmatická trubice čirá trubice Měrný výkon (lm/W) 74 83 85 76 Náhradní teplota chromatičnosti (K) 6 200 6 700 6 800 3 900 Index barevného podání (-) 75 82 Příkon (W) 12 18 22 43 Účiník (-) 0,95 0,96 0,94 0,47 (bez C) Světelný tok zdroje (lm) 890 1 452 1 817 3 244 Účinnost svítidla (%) 90 87 77

Světelné diody - LED

Světelné diody - OLED Co je OLED ? Princip: OLED je světelná dioda, která je vyrobena z organického materiálu. Může mít velmi malé rozměry, zejména nepatrnou tloušťku (ultratenké vrstvy - 200m). Dá se používat na svítící fólie, displeje, monitory, … Princip: Základem je organický materiál, který po přivedení napětí emituje světlo. Základní pixel se skládá ze tří subpixelů (červený, modrý, zelený). Subpixely jsou dostatečně malé, lidské oko si je spojí a vznikne výsledná barva. „Skládáním“ jednotlivých pixelů lze dosáhnout svítící plochy.

Vlastnosti OLED Vlastnosti OLED diod: * současný měrný výkon do 30 lm/W (potenciál až 250 lm/W) * OLED může být průhledná a ohebná * závislost jasu na velikosti napětí je nelineární, do 2V se neemitují žádné elektrony (zbytkové napětí nemá vliv). Výsledný jas plochy je nižší, jednotlivé pixely mají mezi sebou určitou vzdálenost.

Zdroj: Autor děkuje Petru Niesigovi z firmy Elkovo Čepelík za aktivní pomoc při tvorbě prezentačních materiálů. Jiří Plch Světelná technika v praxi Jiří Habel Základy světelné techniky http://www.leifiphysik.de/ http://www.elkovo-cepelik.cz Technologie OLED http://www.svethardware.cz Materiál je určen pouze pro studijní účely