ROZPOUŠTĚDLA.

Slides:



Advertisements
Podobné prezentace
Směsi, jejich třídění, oddělování složek směsí
Advertisements

Směsi, jejich třídění, oddělování složek směsí
Tenze páry nad kapalinou a roztokem
Hasiva klasická a moderní Název opory –Úvod do studia
Lipidy estery alkoholů a vyšších mastných kyselin.
II. Statické elektrické pole v dielektriku
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření:
Ethery obecný vzorec R1-O-R2.
Výukový materiál zpracován v rámci projektu EU peníze školám
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Alkeny.
Chemické vazby Chemické vazby jsou soudržné síly, neboli silové interakce, poutající navzájem sloučené atomy v molekulách a krystalech. Podle kvantově.
CHEMICKÁ VAZBA.
Elektronový pár, chemická vazba, molekuly
Poznámka: Text, jenž se nachází u každého snímku v poznámkách, by měl být při prezentaci zmíněn ústně.
SKUPENSKÉ STAVY HMOTY Teze přednášky.
Chemické rovnováhy ve vodách
Nejdůležitější produkty organické chemie
ÚVOD DO STUDIA CHEMIE.
Separační metody.
„Svět se skládá z atomů“
Roztoky roztoky jsou homogenní, nejméně dvousložkové soustavy
Schéma rovnovážného modelu Environmental Compartments
Základní chemické výpočty: 1. Hmotnost atomu 2. Látkové množství 3
RoztokyRoztoky Učební materiál vznikl v rámci projektu INFORMACE – INSPIRACE – INOVACE, který je spolufinancován Evropským sociálním fondem a státním rozpočtem.
R O Z T O K Y.
ELEKTROLYTICKÝ VODIČ.
Chemická vazba Vazebné síly působící mezi atomy
Výukový materiál: VY_32_INOVACE_Benzín Název projektu: Šablony Špičák Číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2 Autor VM: Mgr. Šárka Bártová.
Mezimolekulové síly.
Soubor prezentací: CHEMIE PRO III. ROČNÍK GYMNÁZIA
okolí systém izolovaný Podle komunikace s okolím: 1.
Mezimolekulové síly.
Mezimolekulové síly.
Ethery Fyzikální vlastnosti etherů -24C 35C -42C 36C
ELEKTRICKÉ POLE.
Roztoky roztoky jsou homogenní, nejméně dvousložkové soustavy jsou tvořeny částicemi (molekulami, ionty) prostoupenými na molekulární úrovni částice jsou.
Nekovalentní interakce
Úvod Rozpouštědla Lepidla Sklo, smalt Keramika Kámen Kosti, kůže Textil Měď a její slitiny Cín a olovo Stříbro, zlato Železo, ocel, litina Sylabus předmětu.
FS kombinované Mezimolekulové síly
Chemické a fyzikální vlastnosti karboxylových kyselin
Vodík IzotopHDT 99,844 %0,0156 % atomová hmotnost1, , , jaderná stabilitastabilní T 1/2 =12,35 let teplota tání °C-259, ,65-252,53.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_132.
Alkany.
ROZPOUŠTĚDLA Voda Organická rozpouštědla mísitelná s vodou
Srážecí metody.
NÁZEV ŠKOLY: ZŠ J. E. Purkyně Libochovice AUTOR: RNDr. Adéla Lipšová NÁZEV: VY_52_INOVACE_21_VLASTNOSTI LÁTEK (2.ČÁST) TÉMA: VLASTNOSTI LÁTEK (2.ČÁST)
NEBEZPEČNÉ LÁTKY NÁZEV OPORY – POŽÁRNĚ TECHNICKÉ PARAMETRY HOŘLAVÉ A VÝBUŠNÉ LÁTKY JOSEF NAVRÁTIL Operační program Vzdělávání pro konkurenceschopnost.
Chemické a fyzikální vlastnosti vody
Ch_026_Uhlovodíky Ch_026_Uhlovodíky_Uhlovodíky Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Registrační.
biologicky nejdůležitější rozpouštědlo tvoří značný hmotnostní podíl orgánů značný význam pro životní pochody nejméně vody: zubní sklovina (0,2 %) x ledviny.
Anotace: Prezentace slouží k přehledu tématu vlastnosti vod Je určena pro výuku ekologie a monitorování životního prostředí v 1. a 2. ročníku střední.
Chemické vlastnosti vod Anotace: Prezentace slouží k přehledu tématu chemické vlastnosti vod Je určena pro výuku ekologie a monitorování životního prostředí.
NÁZEV ŠKOLY: ZŠ J. E. Purkyně Libochovice AUTOR: RNDr. Adéla Lipšová NÁZEV: VY_52_INOVACE_22_NEBEZPEČNOST LÁTEK TÉMA: NEBEZPEČNOST LÁTEK ČÍSLO PROJEKTU:
Ch_040_Ethery Ch_040_Deriváty uhlovodíků_Ethery Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Registrační.
EU peníze středním školám Název vzdělávacího materiálu: Roztoky Číslo vzdělávacího materiálu: ICT9/10 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Název školy Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice Číslo projektu CZ.1.07/1.5.00/ Název materiálu.
ARENY. DEFINICE * Areny jsou uhlovodíky, které obsahují v molekule alespoň jedno benzenové jádro. * Starší název aromatické uhlovodíky.
Základní pojmy.
ROZPOUŠTĚDLA.
Směsi, jejich třídění, oddělování složek směsí
Rozpouštědla ve výtvarné tvorbě
EU peníze středním školám
1. Historické a kulturní památky, muzejní exponáty, jejich stárnutí a restaurování Památky historické nebo kulturní povahy (dále jen sbírkové předměty)
Název školy: Základní škola Karla Klíče Hostinné
1. Historické a kulturní památky, muzejní exponáty, jejich stárnutí a restaurování Památky historické nebo kulturní povahy (dále jen sbírkové předměty)
Srážecí metody.
ELEKTROLYTICKÝ VODIČ.
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Mezimolekulové síly.
Transkript prezentace:

ROZPOUŠTĚDLA

ROZPOUŠTĚDLO označení pro látku se schopností rozpouštět látky (rovnoměrně v sobě rozptýlit částice jiných látek) za vzniku homogenní směsi - roztoku má jednotné chemické a fyzikální vlastnosti v celém svém objemu hlavním úkolem rozpouštědla je převést filmotvornou složku do roztoku v každém roztoku existují dvě složky: rozpouštědlo a rozpouštěná látka rozpouštědlem je nazývána každá látka, která je schopna rozpouštět jinou látku voda organická rozpouštědla mísitelná s vodou organická rozpouštědla nemísitelná s vodou (nevodná rozpouštědla) směsné rozpouštědlové systémy

Voda nejběžnější polární rozpouštědlo dobré hydratační vlastnosti silné interakce mezi molekulami - vodíkové můstky

Nevodná rozpouštědla Směsná rozpouštědla protická (alkoholy, kapalný amoniak, aj.) aprotická polární (DMSO, DMFA, MeCN aj.) aprotická nepolární (alkany, aromáty, apod.) Směsná rozpouštědla používají se relativně často pro zvýšení rozpustnosti buď iontové sloučeniny nebo reagentu převládá vliv jednoho nebo druhého rozpouštědla u ideálního chování směsi se často setkáváme s aditivním účinkem vlastnosti neideální chování směsi se projevuje v synergickém nebo antagonistickém působení

POLARITA ROZPOUŠTĚDEL fyzikální konstanty vypovídající o polaritě rozpouštědel: dipólový moment m a dielektrická konstanta e (nebo D) Dipólový moment parametr charakterizující polární vazbu heteronukleárních molekul (vykazují elektrický dipól) platí vztah m =  . l kde  je zlomkový náboj na atomech (kladný nebo záporný), l je délka vazby. u polyatomických molekul je dipólový moment vektorovým součtem dipólových momentů všech vazeb v molekule polární molekuly se stálým dipólovým momentem tvoří permanentní dipól Dielektrická konstanta (relativní permitivita) látková konstanta, která vyjadřuje, kolikrát se elektrická síla zmenší v případě, že tělesa s elektrickým nábojem jsou místo ve vakuu umístěna v látkovém prostředí závislá na tvaru, orientaci a koncentraci molekul dané látky

Dipólové momenty a dielektrické konstanty některých jednoduchých rozpouštědel Molekula Zkratka Vzorec m D voda H2O 6,15 78 acetonitril MeCN CH3CN 3,20 38,0 ethylalkohol EtOH C2H5OH 1,69 24,3 butylacetát BuAc CH3COOC4H9 diethylether Et2O (C2H5)2O 1,15 4,3 benzen Bz C6H6 2,29 toluen Tol C6H5CH3 0,36 2,38 n-hexan Hex C6H12 1,9 chloroform Chl CHCl3 4,7 chlorid uhličitý tetrachlor CCl4 2,2 dimethylsulfoxid DMSO (CH3)2SO 3,96 45,0 dimethylformamid DMFA (CH3)2NCOH 3,82 36,1 aceton Ac (CH3)2CO 2,84 20,9 dioxan C4H8O2 0,45 2,209 methylethylketon (CH3)(C2H5)CO 2,79 18,4

Rozpouštědla se používají: Z velkého počtu organických rozpouštědel pouze některá našla použití při konzervování a restaurování uměleckých cenností. Rozpouštědla se používají: k sejmutí znečištěných povrchových vrstev ze sbírkových předmětů k přípravě laků pro nanesení na povrch konzervovaného nebo restaurovaného předmětu jako součást lepidel k přípravě roztoků určených k impregnaci pórovitých systémů k obecným účelům rozpouštění látek pro nejrůznější účely

VLASTNOSTI ROZPOUŠTĚDEL, které rozhodují o použití v konzervátorsko-restaurátorské praxi polarita rozpouštědla teplota varu teplota tání hustota viskozita relativní rychlost odpařování hořlavost toxicita dostupnost a cena Pozn.1 : rozpouštědlo byl mělo být vůči konzervovanému nebo restaurovanému předmětu chemicky inertní. Pozn 2: Pro určení rozpouštěcí schopnosti rozpouštědel lze využít praktického principu „podobné se rozpouští v podobném“.

Relativní rychlost vypařování Nutné znát pro určení doby, po kterou má být předmět ve styku s rozpouštědlem, tj. určení času jeho odpařování z povrchových vrstev Metoda určování tohoto ukazatele: srovnání doby vypařování diethyletheru (nejtěkavějšího rozpouštědla) s dobou vypařování srovnávaného rozpouštědla obvykle se ke srovnání bere po 5 ml obou rozpouštědel, které se nanesou na filtrační papír a měří se doba, za kterou se rozpouštědla odpaří tento ukazatel umožňuje vybrat optimální variantu působení rozpouštědla na materiál restaurovaného objektu

Toxicita rozpouštědla Toxicitu (výstražný symbol T+, T) rozpouštědel charakterizuje mezní přípustná koncentrace (MPK) v pracovní zóně provozních místností při krátkodobé expozici pracovníka a informace o ní je jedna z nejdůležitějších, kterou musí pracovník s rozpouštědlem znát. Kompletní informace o vlastnostech rozpouštědla lze získat nejlépe z bezpečnostního listu (BL). Vysoce toxickým rozpouštědlům je lépe se zcela vyhnout, je třeba dát si pozor na konzervátorsko-restaurátorskou praxi, neboť použití mnoha rozpouštědel je zcela zakázáno. Toxikologické informace z BL je také třeba umět správně vyhodnotit.

Hořlavost rozpouštědla Na hořlavost rozpouštědel se lze usoudit na základě teploty vzplanutí, což je teplota, při které mohou páry na povrchu látky vzplanout v přítomnosti zápalného zdroje. Je zapotřebí vědět, že hořlaviny dělíme do 4 tříd. Nejnebezpečnější jsou samozřejmě hořlaviny 1. třídy s bodem vzplanutí 0 °C např. diethylether, sirouhlík, aceton apod.). Informace o hořlavých vlastnostech látek, mezích výbušnosti jejich par, způsobech jejich zneškodňování apod. lze opět vyčíst z BL.

PŘÍPRAVA ROZTOKŮ POLYMERNÍCH LÁTEK Při přípravě roztoků polymerů je třeba věnovat výběru rozpouštědla s ohledem na vysokomolekulární sloučeninu značnou pozornost. Pro rozpuštění polymerů existují „dobrá“ a „špatná“ rozpouštědla. „Dobré“ rozpouštědlo tvoří s polymerem v určeném rozsahu koncentrací homogenní systém. „Špatné“ rozpouštědlo tvoří pravý roztok jen v úzkém intervalu koncentrací, jinak dochází k vytvoření dvoufázového systému. Rozpouštědla s vysokou rozpouštěcí schopností mnohých polymerů se nazývají aktivní rozpouštědla. Roztoky polymerů je možné často ředit rozpouštědlem, které samo daný polymer nerozpouští - ředidla - snižují viskozitu roztoku. Účinnost ředidla se hodnotí zřeďovacím číslem (faktorem zředění), což představuje takové množství ředidla, které je možno přidat do roztoku polymeru, aniž by došlo ke srážení vysokomolekulární látky.

Odstraňovaná nečistota Používaná rozpouštědla POUŽITÍ ROZPOUŠTĚDEL Odstraňování znečištění ze sbírkových předmětů z různých materiálů: Stupeň účinku rozpouštědel na dílo je dán zpravidla zkušenostmi a zkouškami konzervátorů a restaurátorů. Rozpouštědla pro odstranění znečištění maleb Odstraňovaná nečistota Používaná rozpouštědla tuky, oleje ethanol, isopropanol, nasycené uhlovodíky, chlorované uhlovodíky fermeže směs ethanolu a terpentýnové silice, methycellosolve laky, přírodní pryskyřice, polymery aceton, methylethylketon, ethanol, toluen, xylen vosky terpentýnová silice, benzin, lakový benzin, chloroform voskokalafunové tmely směs ethanolu s acetonem, methylcellosolve parafin toluen, xylen stearin lakový benzin, benzin olejová barva dimethylacetamid, dimethylsulfoxid kasein-olejová tempera methycellosolve polyvinylacetátová tempera ethanol, aceton, ethylacetát

Rozpouštědla pro odstranění znečištěných vrstev z kamenné skulptury Při odstraňování jednotlivých znečištěných vrstev se používají roztoky polymerů, které vytvářejí na povrchu film. Nejprve probíhá změkčení nečistot a jejich sorpce vzniklým filmem, který se snadno z předmětu sejme. Roztoky polymerů obsahují často glycerin, ethylenglykol a polyethylenoxidy ve funkci antiadheziva a plastifikátoru. Rozpouštědla pro odstranění znečištění lakem Pro odstraňování lakových vrstev a skvrn z dřevěných uměleckých děl se používají různá rozpouštědla, nejčastěji ethanol, terpentýnová silice a lakový benzin. Pro účely konzervování se na sbírkové předměty z různých materiálů nanáší laková vrstva. Laky se zhotovují z polymerů, které se při konzervování a restaurování předmětů nejčastěji používají – polybutylmethakrylát (PBMA) a polyvinylbutyral (PVB). Lakové vrstvy těchto polymerů ochraňují díla před jejich poškozením. Jako rozpouštědla se používají aceton, methylethylketon, ethanol, ethylacetát a butylacetát.

Směsi rozpouštědel Jejich použití je dáno mnohdy empiricky Samotná čistá rozpouštěla jsou někdy neúčinná, a proto se stává nutností používat směsi rozpouštědel Kromě směsí, namíchaných pro restaurátorské účely chemiky konzervátory nebo restaurátory, se mnohdy používají již hotové, průmyslem vyráběné, mnohokomponentní směsová rozpouštědla a odstraňovače starých nátěrů V těchto směsích se vyskytují aktivní rozpouštědla, z nichž mnohá jsou značně toxická, a proto práce s nimi vyžaduje speciální podmínky

Složení směsi rozpouštědel Užití pro odstranění vrstev Roztoky pro snímání vrstev Složení směsi rozpouštědel Užití pro odstranění vrstev komponenty hmot.% 1,3-dioxolan benzen ethanol aceton 50 30 10 odstranění vrstev na základě polymerizovaného oleje, fenolformadehydových a vinylových polymerů toluen kolloxylin parafin 47,5 28 19 5 0,5 dtto methylenchlorid pryskyřice PSCh-s xylen kyselina octová 70,56 11,24 9,21 5,62 2,25 1,12 odstranění olejových, alkydových, vinylchloridových, polyakrylátových, melaminoformaldehydových a epoxidových nátěrů emulgátor inhibitor koroze 85,5 9,5 0,9 1,7 2,4