Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Algebraické výrazy: lomené výrazy
Advertisements

Mocniny zlomků (základu – mocněnce ve tvaru zlomku)
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Zlomky Násobení zlomků..
Věty o počítání s mocninami Věta o násobení mocnin
Lomené algebraické výrazy
Zlomky Sčítání zlomků..
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Sčítání a odčítání výrazů
Lomené algebraické výrazy
Rovnice s absolutními hodnotami
Algebraické výrazy: počítání s mnohočleny
Lomené výrazy – sčítání a odčítání lomených výrazů
Lomené algebraické výrazy
„EU peníze středním školám“ Název projektuModerní škola Registrační číslo projektuCZ.1.07/1.5.00/ Název aktivity III/2 Inovace a zkvalitnění výuky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy – početní operace
Mnohočleny a algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Úpravy algebraických výrazů
Zkvalitnění výuky přírodovědných předmětů s cílem zvyšování motivace
Soustava lineárních nerovnic
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Mnohočleny Násobení Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Sčítání a odčítání mnohočlenů
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy a jejich úpravy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Mnohočleny Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: ,
* Mnohočleny Matematika – 8. ročník *.
Podíl (dělení) mnohočlenů
Rozklad mnohočlenů na součin
(řešení pomocí diskriminantu)
Kvadratické nerovnice
Ryze kvadratická rovnice
Rozklad mnohočlenů na součin
Číselné výrazy s proměnnou
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ČÍSELNÉ OBORY, VÝRAZY - OPAKOVÁNÍ Cyrilometodějská církevní základní škola Lerchova 65, Brno Tento výukový materiál vznikl v rámci projektu EU–peníze do.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ČÍSLO PROJEKTU CZ.1.07/1.5.00/ ČÍSLO MATERIÁLU 18 – Výrazy a operace s mnohočleny – teorie NÁZEV ŠKOLY Střední škola a Vyšší odborná škola cestovního.
Věty o počítání s mocninami Věta o násobení mocnin
KOMPLEXNÍ ČÍSLA Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Nerovnice v podílovém tvaru
Řešení nerovnic Lineární nerovnice
Algebraické výrazy: počítání s mnohočleny
Řešení nerovnic Lineární nerovnice 1
Řešení nerovnic Lineární nerovnice
Nerovnice v podílovém tvaru
Rozklad mnohočlenů na součin
Rozklad mnohočlenů na součin
Algebraické výrazy: počítání s mnohočleny
Algebraické výrazy: počítání s mnohočleny
Jednočleny a mnohočleny Sčítání a odčítání
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Algebraické výrazy Sčítání a odčítání výrazů Foto vlastní

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Algebraický výraz. = předpis jedné nebo více matematických operací (sčítání, odčítání, násobení, dělení, umocňování, …) = předpis, který obsahuje blíže neurčené znaky (a; b; c; v; z1; z2; Q; m; t … – mohou to být konstanty či proměnné a nemusíme znát ani jejich hodnotu), čísla a matematické operátory (sčítání, odčítání, násobení, dělení, umocňování, …) Výraz známe jako část vzorce pro výpočet obvodu trojúhelníku. Připomínají Vám něco následující výrazy, a které matematické operace obsahují? Výraz známe jako část vzorce pro výpočet objemu kvádru. Výraz známe jako část vzorce pro výpočet obvodu čtverce. Výraz je částí vzorce pro výpočet obsahu lichoběžníku. Výraz je částí vzorce pro výpočet měrné tepelné kapacity.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Algebraický výraz. Zápis algebraických výrazů. Proč jednou píšeme znak operace násobení a jednou ne? Operátor píšeme tam, kde je to nezbytně nutné nebo pro větší přehlednost.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Algebraický výraz. Zápis algebraických výrazů. na rozdíl od Operátor píšeme tam, kde je to nezbytně nutné nebo pro větší přehlednost. Smíšené číslo. Násobení celého čísla a zlomku.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Druhy algebraických výrazů. 1. Číselné výrazy

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Druhy algebraických výrazů. 2. Výrazy s proměnnou

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Druhy algebraických výrazů. 2. Výrazy s proměnnou Je-li proměnná ve jmenovateli zlomku, jedná se o lomený výraz.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Hodnota výrazu s proměnnou. Proměnnou ve výrazu rozumíme znak, který označuje libovolné číslo z určité množiny, kterou nazýváme obor proměnné nebo definiční obor výrazu. Dosadíme-li za proměnné do výrazu libovolná čísla, pro která má daný výraz smysl, a provedeme všechny předepsané operace, dostaneme jako výsledek číslo – hodnotu výrazu. Nelze dosadit 0. Dosadíme-li např. 1, hodnota výrazu bude 2; dosadíme-li 2, hodnota výrazu bude 1; … Můžeme dosadit libovolné reálné číslo. Dosadíme-li např. 1, hodnota výrazu bude 7; dosadíme-li 2, hodnota výrazu bude 8; …

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jednočlen, mnohočlen. Výrazy jsou tvořeny členy. Členy jsou od sebe odděleny operátory početních operací sčítání nebo odčítání. Podle počtu členů dělíme výrazy na jednočleny a mnohočleny. Jednočlen je výraz tvořen jedním členem, případně znak či číslo. 2x y.y12yz-9a-5xy(cd):2 Mnohočlen je výraz tvořen součty nebo rozdíly jednočlenů. 2x + 3y – 2y + ya/2 – 6a.ab - 9a – 4cb (3x – 5) + (2x – 4) Mnohočlen se dvěma jednočleny se nazývá dvojčlen. Mnohočlen se třemi jednočleny se nazývá trojčlen. … součet dvou dvojčlenů (3x – y + 2).(x + 2y – 1) … součin dvou trojčlenů a35

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů. Začneme hodně názorně, zavzpomínáme na první třídu! 3 +5 22 +2= =3 2 = =1 +7 =

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů. Jak jsme si tedy ukázali, sčítat a odčítat můžeme jen stejné členy se stejnou proměnnou. druhou proměnnou pak opět jen s touto proměnnou. To znamená čísla jen s čísly, jednu proměnnou jen s touto proměnnou, Využijeme komutativní zákon a členy mnohočlenu si podle uvedeného přeskupíme. Pozor na to, že členy „bereme“ i s jejich znaménky, které určují, zda mají kladnou či zápornou hodnotu!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů. Sčítat a odčítat můžeme jen stejné členy se stejnou proměnnou, ale zároveň i se stejným mocnitelem (exponentem). proměnné na druhou jen s proměnnými na druhou. To znamená čísla jen s čísly, proměnné jen s proměnnými, Využijeme komutativní zákon a členy mnohočlenu si podle uvedeného přeskupíme. Pozor na to, že členy „bereme“ i s jejich znaménky, které určují zda mají kladnou či zápornou hodnotu!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů se závorkami. Stejně jako při úpravách číselných výrazů, mají závorky ve výpočtech přednost. Pokud to tedy je možné, vypočítáme je (určíme jejich hodnotu), pokud to možné není, odstraníme je! I pro výpočty v závorkách opět platí, že sčítat a odčítat můžeme jen čísla s čísly, proměnné jen s proměnnými, proměnné na druhou jen s proměnnými na druhou, atd. V našem případě se dají členy v závorkách vzájemně sečíst a odečíst a závorky tak odstranit! I v tomto případě se dají členy v závorkách vzájemně sečíst a odečíst a závorky odstranit, byť vzhledem ke znaménkům až „napodruhé“!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů se závorkami. Podívejme se, jak se závorky odstraňovaly. 1) Je-li před závorkou znaménko + (plus), vynechá se společně se závorkou a všechny členy závorky se opíší (se stejnými znaménky, která měla v závorce). 2) Je-li před závorkou znaménko  (mínus), vynechá se společně se závorkou a u všech členů v závorce se změní znaménka, jinými slovy změní se v opačné. Totéž platí i v případě odstraňování závorek, které nelze upravit!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Sčítání a odčítání výrazů se závorkami. 1) Je-li před závorkou znaménko + (plus), vynechá se společně se závorkou a všechny členy závorky se opíší (se stejnými znaménky, která měla v závorce). 2) Je-li před závorkou znaménko  (mínus), vynechá se společně se závorkou a u všech členů v závorce se změní znaménka, jinými slovy změní se v opačné. V daném případě se nedají členy v závorkách vzájemně sečíst a odečíst a závorky tak musíme odstranit jinak! Na začátku závorky se, stejně jako na začátku příkladu, v případě kladné hodnoty znaménko + nepíše, přestože víme, že tam je a počítáme s ním!  (  5 + x  x 2 ) = 5  x + x 2 + (  5 + x  x 2 ) =  5 + x  x 2 + (  5 + x  x 2 )  + +

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Klikni pro kontrolu výsledků. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Klikni pro kontrolu výsledků. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Klikni pro kontrolu výsledků. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení. Klikni pro kontrolu výsledků.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení. Klikni pro kontrolu výsledků.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení. Klikni pro kontrolu výsledků.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady - sčítání a odčítání výrazů. Na závěr si můžeme i zahrát. Spusťte si následující odkaz. Tady zadejte svá jména. Tady spustíte hru pro jednoho hráče. Tady pro hráče dva.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady - sčítání a odčítání výrazů. Na závěr si můžeme i zahrát. Spusťte si následující odkaz. Prozatím vybírejte úkoly (příklady) jen z prvního sloupce. Řešit příklady z ostatních se teprve budeme učit.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady - sčítání a odčítání výrazů. Na závěr si můžeme i zahrát. Spusťte si následující odkaz. … a tady si ji nechte zkontrolovat. Tady zadejte svou odpověď…

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady - sčítání a odčítání výrazů. Na závěr si můžeme i zahrát. Spusťte si následující odkaz. … a tady klikněte pro pokračování. Tady uvidíte, jestli jste odpověděli správně...

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady - sčítání a odčítání výrazů. Na závěr si můžeme i zahrát. Spusťte si následující odkaz. A může soutěžit a výběrem otázky pokračovat druhý z vás. Tady pak můžete soutěž ukončit a případně začít znovu.