Goniometrické funkce funkce sinus

Slides:



Advertisements
Podobné prezentace
V PRAVOÚHLÉM TROJÚHELNÍKU
Advertisements

POZNÁMKY ve formátu PDF
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus ostrého úhlu
Výukový materiál byl zpracován v rámci projektu
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
SINUS KOSINUS. VLASTNOSTI GONIOMETRICKÝCH FUNKCÍ  Funkce sinus a kosinus patří mezi goniometrické funkce.  Goniometrické funkce tvoří skupina šesti.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
PRAVOÚHLÝ TROJÚHELNÍK
VLASTNOSTI TROJÚHELNÍKŮ
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
VY_42_INOVACE_109_PYTHAGOROVA VĚTA Jméno autora VMM. Lačná Datum vytvoření VMříjen 2011 Ročník použití VM8. ročník Vzdělávací oblast/obormatematika Anotace.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
AnotacePrezentace, která se zabývá odvěsnami v pravoúhlém trojúhelníku. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci poznají dané odvěsny.
Goniometrické funkce funkce tangens a kotangens
Goniometrické funkce Kotangens ostrého úhlu
Pravoúhlý trojúhelník
AnotacePrezentace, která se zabývá celkovým opakováním goniometrických funkcí. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci opakují goniometrické.
57.1 Goniometrické funkce a jejich vlastnosti II.
PLANIMETRIE Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Autor: Mgr. Renata Čermáková.
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
V PRAVOÚHLÉM TROJÚHELNÍKU
IDENTIFIKÁTOR MATERIÁLU: EU
IDENTIFIKÁTOR MATERIÁLU: EU
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Vzorce pro goniometrické funkce v pravoúhlém trojúhelníku
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jaroslava Holečková. Dostupné z Metodického portálu ISSN: Provozuje.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
AnotacePrezentace, která se zabývá opakováním a doplněním znalostí o pravoúhlém trojúhelníku. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci.
PRAVOÚHLÝ TROJÚHELNÍK V ROVINNÝCH GEOMETRICKÝCH OBRAZCÍCH
Pythagorova věta Pythagoras 570 př.n.l. – 510 př.n.l.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Pravoúhlý trojúhelník (procvičování)
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín VY_32_INOVACE_M_09 Goniometrické funkce - kosinus Zpracovala: Mgr. Květoslava Štikovcová.
2.4 Funkce sinus a kosinus na JK 2 GONIOMETRIE Mgr. Petra Toboříková, Ph.D. VOŠZ a SZŠ Hradec Králové, Komenského 234.
Tangens a kotangens v pravoúhlém trojúhelníku (5).
2.10 Goniometrické funkce ostrého úhlu ve slovních úlohách 2 GONIOMETRIE Mgr. Petra Toboříková, Ph.D. VOŠZ a SZŠ Hradec Králové, Komenského 234.
Funkce sinus (8). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
Funkce tangens (10). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
PRAVOÚHLÉHO TROJÚHELNÍKU
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce funkce kosinus
IDENTIFIKÁTOR MATERIÁLU: EU
SINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Matematika – 7.ročník VY_32_INOVACE_
Speciální vzdělávací potřeby - žádné - Klíčová slova
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Goniometrické funkce Autor © Mgr. Radomír Macháň
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
COSINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce v pravoúhlém trojúhelníku
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
EUKLIDOVA VĚTA O VÝŠCE:
Transkript prezentace:

Goniometrické funkce funkce sinus

Pravoúhlý trojúhelník Nejdelší strana c se nazývá přepona Strany a,b svírající pravý úhel jsou odvěsny

Pravoúhlý trojúhelník Vzhledem k úhlu α se strana a nazývá protilehlá odvěsna

Pravoúhlý trojúhelník Velikosti úhlu α je přiřazeno číslo, které je poměrem protilehlé odvěsny a ku přeponě c. Tato funkce se nazývá sinus úhlu α, zkráceně sin α

Pravoúhlý trojúhelník Sinus α je poměr protilehlé odvěsny a ku přeponě c

Pravoúhlý trojúhelník Vzhledem k úhlu β se strana b nazývá protilehlá odvěsna

Pravoúhlý trojúhelník Sinus β je poměr protilehlé odvěsny b ku přeponě c

K určování hodnot funkce sinus používáme tabulky nebo kalkulačku