Pokročilé architektury počítačů (PAP_06.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava
Karel VlčekPokročilé architektury procesorů 2 Specializované procesory Architektury specializovaných procesorů se objevují již u sálových počítačů: Kanálový procesor pro vstupní/výstupní operace s vlastním souborem instrukcí (1964) Komunikační procesor pro dálkový přenos dat u počítačů IBM 370 (1971) Procesor jazyka Fortran FFP (Fast Fortran Processor) (1986) FFT (Fast Fourier Transform) procesory
Karel VlčekPokročilé architektury procesorů 3 Maticové a vektorové procesory Jsou univerzální nebo specializované? To je možné rozhodnout známe-li kriterium algoritmické závislosti Je-li struktura hardware ovlivněna výpočetním algoritmem, jedná se o specializovaný procesor Pouhé rozšíření množiny datových typů netvoří specializovanou architekturu
Karel VlčekPokročilé architektury procesorů 4 Grafické procesory Kategorie Grafické procesory pro osobní počítač PC Grafické procesory profesionálních a grafických systémů Experimentální a výzkumné projekty vysoce výkonných grafických systémů
Karel VlčekPokročilé architektury procesorů 5 Počítačová grafika Systém s rastrovým displejem Procesor Hlavní paměť Paměť snímku Řadič displeje Displej Systémová sběrnice Periferní jednotky
Karel VlčekPokročilé architektury procesorů 6 Rastrový displej Rastrový displej se vyznačuje vyhrazenou pamětí pro ukládání snímku (pamětí videa) Každý obrazový prvek (pixel) je popsán jedním nebo více bity Pro konverzi pro zobrazení na monitoru se používá číslicových - analogových převodníků DAC (Digital to Analogue Converter)
Karel VlčekPokročilé architektury procesorů 7 Paměť snímku Paměť snímku je konstrukčně odlišná od hlavní paměti, jak umístěním, tak typem přístupu Do paměti snímku má přístup systémový procesor, ale i řadič displeje Paměť je tedy zpravidla dvoubránová, což minimalizuje počet konfliktů
Karel VlčekPokročilé architektury procesorů 8 Organizace paměti snímku Logická organizace paměti snímku Paměť snímku Lineární adresa Adresa X Adresa Y Hodnoty pixelů Generátor řádkového rozkladu
Karel VlčekPokročilé architektury procesorů 9 Paměť barevného snímku Barevné zobrazení vyžaduje, aby každý pixel byl popsán 24 - bitovým slovem (true color) Mapa barev (Colour mapping) je uchovávána v tzv. LUT (Look-up Table) Tím se ušetří kapacita paměti, protože hodnota RGB (Red, Green, Blue) je v paměti barevného snímku komprimována
Karel VlčekPokročilé architektury procesorů 10 Principy 2D grafiky Grafický subsystém konvertuje data z údajů potřebných pro rastrové zobrazení do podoby vhodné k 2D resp. 3D zobrazení Technické prostředky pro zobrazení 2D grafiky se nazývají grafická karta nebo grafický akcelerátor
Karel VlčekPokročilé architektury procesorů 11 Grafický subsystém Nadřízený počítač Grafický subsystém Hlavní paměť a procesor Řadič Paměť snímku DAC Disk Displej R G B Uspořádání grafického subsystému
Karel VlčekPokročilé architektury procesorů 12 Literatura: Dvořák, V.: Architektura a programování paralelních systémů, VUTIUM Brno, (2004), ISBN X Dvořák, V., Drábek, V.: Architektura procesorů, VUTIUM Brno, (1999), ISBN Drábek, V.: Výstavba počítačů, PC-DIR, s.r.o. Brno, (1995), ISBN Mueller, S.: Osobní počítač, Computer Press, Praha, (2001), ISBN Pluháček, A.: Projektování logiky počítačů, Vydavatelství ČVUT Praha, (2003), ISBN