Praktikum elementární analýzy dat Třídění 2. a 3. stupně 30.5.2012 UK FHS Řízení a supervize (LS 2012) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.

Slides:



Advertisements
Podobné prezentace
Testování neparametrických hypotéz
Advertisements

Kvantitativní metody výzkumu v praxi
Jiří Šafr jiri.safr(zavináč)seznam.cz
Analýza kvantitativních dat: 1. úvod do SPSS Jiří Šafr jiri.safr(zavináč)seznam.cz vytvořeno , poslední aktualizace UK FHS Historická.
Lineární regresní analýza Úvod od problému
Kvantitativní metody výzkumu v praxi PRAKTIKUM
Jiří Šafr jiri.safr(zavináč)seznam.cz
Analýza kvantitativních dat I.
Analýza dat.
MUDr. Michal Jurajda, PhD. ÚPF LF MU
Kvantitativní metody výzkumu v praxi (KMVP) 0. Poučení z minulých ročníků a novinky od ZS 2013 (2011) poslední aktualizace Jiří Šafr jiri.safr(at)seznam.cz.
Řízení a supervize v sociálních a zdravotnických organizacích
Základy ekonometrie Cvičení 3 4. října 2010.
Analýza kvantitativních dat II.
Analýza kvantitativních dat II. Analýza chybějících hodnot (missing values) Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 23/5/2012 UK FHS Historická.
Analýza kvantitativních dat II. / Praktikum Vícenásobné výběrové otázky (Multiple response) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.
Korelace a elaborace aneb úvod do vztahů proměnných
Úvod: Vytvoření datové matice a pořízení dat Výzkum TV & knihy Jiří Šafr FHS UK, HiSo a ŘS Analýza kvantitativních dat AKD I. (II.) / Praktikum LS 2011,
Lineární regrese.
Lineární regresní analýza
Biostatistika 6. přednáška
Další spojitá rozdělení pravděpodobnosti
- Pojmy - SPSS Statistické zpracování kvantitativních šetření.
Pohled z ptačí perspektivy
Jiří Šafr jiri.safr(zavináč)seznam.cz
Korelace a elaborace aneb úvod do vztahů proměnných
Analýza kvantitativních dat I. Vztahy mezi 3 znaky v kontingenční tabulce - úvod Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace
Analýza kvantitativních dat II. TEST 1 (v LS 2012) Aktualizované verze jsou k dispozici na Jiří Šafr jiri.safr(zavináč)seznam.cz.
Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 11/3/2014
Pearsonův test dobré shody chí kvadrát
Biostatistika 8. přednáška
Biostatistika 1. přednáška Aneta Hybšová
PSY717 – statistická analýza dat
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Map of bivariate analyses configuration (bivariate and trivariate) UK FHS Historical sociology (2014) Jiří Šafr jiri.safr(AT)seznam.cz updated 2/6/2014.
Popisná analýza v programu Statistica
1. cvičení
Úvod: Vytvoření datové matice a pořízení dat Výzkum TV & knihy Jiří Šafr FHS UK, HiSo a ŘS Analýza kvantitativních dat AKD I. (II.) / Praktikum LS 2011,
STATISTICKÝ ROZCESTNÍK aneb CO S DATY Martin Sebera.
Míry asociace obecná definice – síla a směr vztahu
Analýza kvantitativních dat I. Vstupní test ze znalostí designu kvantitativního sociologického výzkumu Jiří Šafr jiri.safr(at)seznam.cz poslední aktualizace.
AKD 1 (7/5) Transformace – vytváření nových proměnných: COMPUTE → SUMA celkový počet knih Konstanta → Student FHS COUNT → knihomol (2 x III. Tercil)
Jiří Šafr jiri.safr(zavináč)seznam.cz
Popisné charakteristiky statistických souborů. ZS - přesné parametry (nelze je měřením zjistit) VS - výběrové charakteristiky (slouží jako odhad skutečných.
TESTY א 2 (CHÍ-kvadrát) TEST DOBRÉ SHODY TEST DOBRÉ SHODY TEST NEZÁVISLOSTI TEST NEZÁVISLOSTI Testy pro kategoriální veličiny Testy pro kategoriální veličiny.
Testování hypotéz Testování hypotéz o rozdílu průměrů  t-test pro nezávislé výběry  t-test pro závislé výběry.
INDUKTIVNÍ STATISTIKA
Opakování – přehled metod
Test dobré shody Fisherův přesný test McNemar test
Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 22/2/2017
- váhy jednotlivých studií
Neparametrické testy parametrické a neparametrické testy
Popisná analýza v programu Statistica
Proč statistika ? Dva důvody Popis Inference
Regresní analýza výsledkem regresní analýzy je matematický model vztahu mezi dvěma nebo více proměnnými snažíme se z jedné proměnné nebo lineární kombinace.
Spojitá a kategoriální data Základní popisné statistiky
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
ORDINÁLNÍ VELIČINY Měření variability ordinálních proměnných
Typy proměnných Kvalitativní/kategorická binární - ano/ne
PSY117 Statistická analýza dat v psychologii Přednáška
Neparametrické testy pro porovnání polohy
Metodologie pro ISK 2 Úvod do práce s daty
Kvantitativní metody výzkumu v praxi
Metodologie pro ISK 2 Kontrola dat Popis kategorizovaných dat
Statistika a výpočetní technika
Analýza kardinálních proměnných
Jiří Šafr jiri.safr(zavináč)seznam.cz
Jiří Šafr jiri.safr(zavináč)seznam.cz
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Základy statistiky.
Transkript prezentace:

Praktikum elementární analýzy dat Třídění 2. a 3. stupně UK FHS Řízení a supervize (LS 2012) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace

Struktura – plán práce Opakování třídění 1. stupně (průměr, směr.odchylka, procenta) „Orientační mapa“ analýzy vztahu 2 proměnných: –Spojitá × spojitá –Spojitá (závislá) × kategoriální (nezávislá) –Kategoriální × kategoriální Kontingenční tabulky Třídění 3. stupně (dtto) Procvičování na datech FHS Knihy&TV Tvorba součtových indexů (data Práce se seniory) Na co s dát pozor (výběrová data vs. census) Jak to má vypadat – úprava tabulek a dalších výstupů

„Orientační mapa“ analýzy 2 proměnných Hlavním cílem výzkumu je testovat hypotézy 2.řádu = vztah dvou (a více) proměnných. (Jak) souvisí spolu hodnoty jedné a druhé proměnné? Např. Proměnné existují ve 2 základních typech: kategoriální (nominální a ordinální) spojité – kardinální (číselné) → různé varianty jejich kombinací při analýze

„Orientační mapa“ analýzy dvou proměnných – přehled analytických nástrojů Spojitá × spojitá, např. počet přečtených knih a věk → korelační koeficient (Pearsonův), bodový X-Y graf Spojitá (závislá) × kategoriální (nezávislá) např. např. počet přečtených knih a obor studia → průměry v podskupinách, koeficient Eta, graf průměrů v podskupinách (Barchart pro mean, Line-multiple nebo Boxplot, Errorbar) Kategoriální × kategoriální např. oblíbené literární žánry a obor studia → kontingenční tabulka, sloupcový graf (Barchart) pro % koeficient kontingence (CC), Phi, Gama …

Spojitá × spojitá Číselná proměnná → ideální situace: nejlepší způsob měření, nejsofistikovanější analýzy, možnost převodu na kategoriální Korelace (a nebo) X-Y graf CORRELATIONS knihy_celk WITH TV. GRAPH /SCATTERPLOT(BIVAR) =knihy_celk WITH TV. ALE! Korelace měří lineární vztah (přímou úměru) a předpokládá „normální“ rozložení proměnných. Závislosti mohou mít i jinou než lineární povahu, proto si raději udělejte i X-Y (Scatter plot) → souvislosti jsou vizuálně vidět Pozor na Outliery – extrémní hodnoty znaků (a jejich kombinace) R - korelační koeficient R 2 - koeficient determinace R = √R 2 a R2 = R × R zde √0,066 = 0,257

Spojitá (závislá) × kategoriální (nezávislá) V principu porovnáváme průměry závislé - spojité v kategoriích nezávislé proměnné + kontrola rozptylu (směrodatné odchylky StD ve skupinách) missing values studium (5 6). MEANS knihy_celk BY studium. GRAPH /BAR(SIMPLE)=MEAN(knihy_celk) BY studium. *pro výběrová data = vzorek z populace) Intervalový odhad průměru s konfidenčním int.:. GRAPH ERRORBAR (CI) knihy_celk BY studium.

Kategoriální × kategoriální Kontingenční tabulka: hledáme souvislosti pomocí spoluvýskytu v relativních četnostech (%) Odchylky od očekávané=teoretické četnosti (→ znaménkové schéma) Pro ordinální znaky sledujeme krajní kategorie a kupení na diagonále. Vidíme i vztahy spoluvýskytu, které nejsou lineární (pro nominální znaky) CROSSTABS knihy_celk3t BY TV3t. CROSSTABS knihy_celk3t BY TV3t /cel = col. CROSSTABS knihy_celk3t BY TV3t /cel = col count. *+ test homogenity; míry asociace / korelace. CROSSTABS knihy_celk3t BY TV3t /cel = col / STATISTICS CC CORREL LAMBDA. Vždy kontrolujeme počet absolutních četností! Pod cca 5 → problém (→ nespolehlivé závěry) → sloučit kategorie.

Třídění 3. stupně

Na co s dát pozor

Výběrová data vs. census Máme-li data z náhodného (dobrého kvótního) výběru z populace (tj. vzorek), pak k testování hypotéz můžeme (měli bychom) přistoupit pomocí principů statistické inference (statistické testy; intervalové odhady → viz AKDII. ) A naopak máme-li kompletní populaci (census) statistické testy nedávají smysl.

Pozor na … Nízké četnosti zejména při spoluvýskytu některých kategorií v kontingenčních tabulkách → sloučit (překódovat) Outliery = extrémní hodnoty → rekódovat na „nižší ale smysluplnou“ hodnotu (nebo případně označit jako chybějící hodnoty)