Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2.

Slides:



Advertisements
Podobné prezentace
Pojem FUNKCE v matematice
Advertisements

Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Složitější funkce tangens a kotangens
F U N K C E III Funkce 20 Goniometrické funkce s absolutní hodnotou
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
F U N K C E II Funkce 5 Mocninná funkce 3 Čihák Plzeň 2013, 2014.
Mgr. Vladimír Wasyliw - s využitím práce Mgr. Petra Šímy – SŠS Jihlava
Název školy Střední škola pedagogická, hotelnictví a služeb,
Základy infinitezimálního počtu
Čihák Plzeň 2013, 2014 Funkce 18 Goniometrické funkce Složitější funkce sinus a kosinus.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Funkce Vlastnosti funkcí.
Matematika Téma č. 5 Funkce Základní pojmy /main terms/основные термины  Reálná funkce f jedné reálné promĕnné x je množina f uspořádaných dvojic.
Funkce.
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_94.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_743.
MATEMATIKA I.
Exponenciální funkce Körtvelyová Adéla G8..
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Exponenciální a logaritmické funkce a rovnice
Funkce Funkce f reálné proměnné x je předpis, který každému x e R přiřadí nejvíc jedno y e R tak, že y = f(x) Definiční obor funkce D je množina všech.
Analýza 1 J.Hendl. Reálná funkce reálné proměnné Def: Nulový bod funkce je x takové, že: Def: Monotonie Funkce je rostoucí, jestliže Funkce je klesající,
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
VLASTNOSTI FUNKCÍ Příklady.
Šablona:III/2č. materiálu:VY_32_INOVACE_147 Jméno autora: Mgr. Tomáš FULÍN Třída/ročník: PS2 / 2.ročník Datum vytvoření: Vzdělávací oblast:Matematika.
Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační číslo projektu CZ.1.07/1.5.00/
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
Posloupnosti a jejich vlastnosti (4.část)
vlastnosti lineární funkce
Logaritmické funkce Michal Vlček T4.C.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Aritmetická posloupnost (Orientační test ) VY_32_INOVACE_22-12  Test obsahuje pět úloh.  U každé úlohy je aspoň jedna odpověď správná.  Na každou úlohu.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
MIROSLAV KUČERA Úvodní informace Matematika B 2
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A10 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A7 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Matematický milionář Foto: autor
Aritmetická posloupnost
FUNKCE 17. Mocninná funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jitka Kusendová. Dostupné z
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A11 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B04 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Definice: Funkce f na množině D(f)  R je předpis, který každému číslu z množiny D(f) přiřazuje právě jedno reálné číslo. Jinak: Nechť A, B jsou neprázdné.
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Graf a vlastnosti funkce
Graf, vlastnosti - výklad
Repetitorium z matematiky Podzim 2012 Ivana Medková
Exponenciální a logaritmické funkce a rovnice
Matematický milionář Foto: autor
Funkce a jejich vlastnosti
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Výuka matematiky v 21. století na středních školách technického směru
Transkript prezentace:

Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2

Pro n ∈ Z + (celé kladné – přirozené číslo) platí: 0 n = 0 1 n = 1 (-1) n = +1pro n sudé (-1) n = -1pro n liché Pro n ∈ Z, x ∈ R-{0} platí: Poznámka: na základě uvedených rovností rozdělíme mocninné funkce s exponentem n takto: n ∈ Z +, n lichén ∈ Z +, n sudé n ∈ Z -, n lichén ∈ Z -, n sudé

Exponent n ∈ Z +, n liché: Vlastnosti určíme z grafů následujících funkcí: f 1 : y = x 1,f 2 : y = x 3,f 3 : y = x 5,Grafy:Grafy: Vlastnosti funkce s exponentem n ∈ Z +, n liché: D(f) = R,H(f) = R prostá,rostoucí na celém D(f) lichá,není omezená (ani shora, ani zdola) Poznámka : Dál: Dál: platí: f(-1) = -1,f(0) = 0,f(1) = 1 se zvyšující se hodnotou exponentu n se na intervalu (-1;1) graf funkce více „přimyká“ k ose x

f 1 : y = x 1,f 2 : y = x 3,f 3 : y = x 5,ZpětZpět

Exponent n ∈ Z +, n sudé: Vlastnosti určíme z grafů následujících funkcí: f 1 : y = x 2,f 2 : y = x 4,f 3 : y = x 6,Grafy:Grafy: Vlastnosti funkce s exponentem n ∈ Z +, n sudé: D(f) = R,H(f) = ⟨0;+∞) není prostá,klesající na (- ∞ ;0⟩, rostoucí na ⟨0;∞) sudá,zdola omezená Poznámka : platí: f(-1) = 1,f(0) = 0,f(1) = 1 se zvyšující se hodnotou exponentu n se na intervalu (-1;1) graf funkce více „přimyká“ k ose x

f 1 : y = x 2,f 2 : y = x 4,f 3 : y = x 6,ZpětZpět