FII Elektřina a magnetismus

Slides:



Advertisements
Podobné prezentace
INTENZITA POLE E.
Advertisements

INTENZITA POLE.
Elektrostatika.
Elektrický náboj a jeho vlastnosti
Elektrický náboj Podmínky používání prezentace
Vodič a izolant v elektrickém poli
Siločáry elektrického pole
GRAVITACE Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
I. Statické elektrické pole ve vakuu
Elektrický náboj a pole
FIFEI-05 Gravitační a elektrostatické působení I
V okolí nabitého tělesa se projevují silové účinky tohoto pole.
Vypracoval: Petr Hladík IV. C, říjen 2007
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Elektrostatika I Mgr. Andrea Cahelová Hlučín 2013.
FII Elektřina a magnetismus I. Elektrostatika.
FII Elektřina a magnetismus
II. Statické elektrické pole v dielektriku
Magnetické pole.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
FII-3 Elektrický potenciál Hlavní body Konzervativní pole. Existence elektrického potenciálu. Práce vykonaná na náboji v elektrickém.
ELEKTRICKÝ NÁBOJ A JEHO VLASTNOSTI.
Radiální elektrostatické pole Coulombův zákon
vlastnost elementárních částic
Fyzika.
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Elektrické pole Podmínky používání prezentace
FII–13 Magnetické pole způsobené proudy
COULOMBŮV ZÁKON.
Silové působení mezi nabitými tělesy Elektroskop
Elektrické pole Elektrický náboj, Elektrické pole
Výuková centra Projekt č. CZ.1.07/1.1.03/
magnetické pole druh silového pole vzniká kolem: vodiče s proudem
FII Exkurse do kosmologie Hlavní body Jak je starý čas? Hraje Bůh „v kostky“? Je ve vesmíru život?
ELEKTRICKÉ VLASTNOSTI LÁTEK
Pavlína Valtrová, 3. C. Každá dvě tělesa se vzájemně přitahují stejně velkými gravitačními silami opačného směru. Velikost gravitační síly F g pro dvě.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
FII-4 Elektrické pole Hlavní body Vztah mezi potenciálem a intenzitou Gradient Elektrické siločáry a ekvipotenciální plochy Pohyb.
Gravitace (gravitační síla, tíhová síla)
Síla.
FII-12 Magnetismus Pole vytvořená pohybujícími se náboji působí na pohybující se náboje.
Anotace Prezentace, která se zabývá elektrickými vlastnostmi látek. Autor Mgr. Michal Gruber Jazyk Čeština Očekávaný výstup Žáci umí vysvětlit a popsat.
ELEKTRICKÉ POLE.
Elektrický náboj.
FZDNM_02 Základní fyzikální pojmy a veličiny: elektřina a magnetismus
INTENZITA ELEKTRICKÉHO POLE
1. část Elektrické pole a elektrický náboj.
Kde je elektrické pole „silnější“
Elektrostatika Elektrický náboj dva druhy náboje (kladný, záporný)
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Mechanika IV Mgr. Antonín Procházka.
ELEKTŘINA A MAGNETISMUS 1. část Elektrické pole
Jaderné reakce (Učebnice strana 133 – 135) Jádra některých nuklidů jsou nestabilní a bez vnějšího zásahu se samovolně přeměňují za současného vysílání.
Elektřina a magnetismus. Vše drží pohromadě díky elektrostatické interakci Cu C, Ge.
Síla 1kg = 10N nebo 100g = 1N značka síly F
Elektrický náboj, elektrické pole. Struktura prezentace úvod otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
E LEKTRICKÉ POLE Ing. Jan Havel. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro potřeby.
Molekulová fyzika a termika
ELEKTROMAGNETICKÉ JEVY
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Vodič a izolant v elektrickém poli Číslo DUM: III/2/FY/2/2/5 Vzdělávací předmět: Fyzika Tematická oblast:
Elektrické vlastnosti látek
změna tíhové potenciální energie = − práce tíhové síly
Elektrický proud Elektrické pole Elektrické siločáry Elektrické napětí.
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Náboj a elektrické pole
Elektrické vlastnosti látek
O zvláštních vlastnostech těles
INTENZITA ELEKTRICKÉHO POLE.
ELEKTRICKÉ VLASTNOSTI LÁTEK
V okolí nabitého tělesa se projevují silové účinky tohoto pole.
Transkript prezentace:

FII Elektřina a magnetismus I. Elektrostatika 6. 7. 2003

FII-1 Elektrický náboj 6. 7. 2003

Hlavní body Proč se zabýváme elektrostatikou? Příklady elektrostatických jevů. Elektrický náboj a jeho vlastnosti. Coulombův zákon. Použití Coulombova zákona. Elektrické pole a elektrická intenzita 6. 7. 2003

Proč se zabýváme elektrostatikou? Mnoho důležitých vlastností přírody existuje jako důsledek interakcí nabitých částic. Nejprve se budeme zabývat náboji a poli, které jsou statická, tedy v klidu. Je to pro zjednodušení, ale taková pole skutečně po dosažení rovnováhy, jehož detaily se nezabýváme, existují. 6. 7. 2003

Příklady elektrostatických jevů Hřeben, kterým jsme si právě prohrábli vlasy přitahuje malé kousky papíru. Jedná se o dalekodosahovou sílu, která může být i odpudivá. Pozorované síly přiřazujeme vlastnosti částic, kterou nazýváme elektrický náboj. Tělesa lze nabít kondukcí vyžadující kontakt s jinými tělesy, ale i na dálku indukcí. Pomocí materiálů, které nazýváme vodiče, můžeme tělesa snadno vybít. S jinými, zvanými izolátory, by to bylo obtížné nebo nemožné. 6. 7. 2003

Hlavní vlastnosti náboje Protože existují přitažlivé i odpudivé elektrické síly, náboje musí být dvojího druhu, pozitivní a negativní. Shodné náboje se odpuzují a rozdílné přitahují. Náboje jsou kvantovány, existují jen v násobcích elementárního náboje e = 1.602 10-19 C. Ve všech známých procesech náboje vznikají nebo zanikají pouze v párech (+q a -q), takže se celkový náboj zachovává. Náboj je invariantní vůči Lorentzově transformaci. 6. 7. 2003

Hlavní vlastnosti elektrostatických interakcí Nabité částice na sebe působí silami. Síly : jsou dalekodosahové – zprostředkované elektrickým polem splňují princip superpozice Vzájemnou interakci dvou bodových nábojů v klidu popisuje Coulombův zákon. 6. 7. 2003

Coulombův zákon I Mějme dva bodové náboje Q1 a Q2 ve vzdálenosti r od sebe. Potom je velikost síly, kterou na sebe navzájem působí rovna : F = k Q1 Q2 / r2 jednotkou náboje v soustavě SI je 1 Coulomb [C] k = 9 109 Nm2/C2 k = 1/40 0 = 8.85 10-12 C2/ Nm2 je permitivita vakua 6. 7. 2003

Coulombův zákon II Protože síly jsou vektory, je důležitá i informace o jejich směru. Úplnou informaci dostaneme, umístíme-li bodový náboj Q1 do počátku a poloha druhého Q2 bude určena polohovým vektorem . Pro sílu, působící na Q2 platí : síly působí ve směru spojnice síly působící na oba náboje jsou akce a reakce positivní síla je odpudivá 6. 7. 2003

Coulombův zákon III Nejobecnější vztah dostaneme, popíšeme-li polohu každého náboje Qi (i=1, 2) jeho vlastním polohovým vektorem . Potom je síla působící na náboj Q2 rovna : Protože síla závisí jen na rozdílu polohových vektorů, je poloha počátku libovolná. 6. 7. 2003

Srovnání elektrostatického a gravitačního působení Formálně je Coulombův zákon podobný Newtonovu gravitačnímu zákonu. ale elektrostatická síla je ~ 1042 (!) krát silnější slabá gravitační síla přesto dominuje ve vesmíru, protože hmota je obvykle neutrální nabít nějaké těleso snamená nepatrně porušit obrovskou rovnováhu 6. 7. 2003

Koncepce pole Je-li náboj umístěn v určitém bodě prostoru, “vysílá” kolem sebe informaci o své pozici, polaritě a velikosti. Tato informace se šíří rychlostí světla. Může být “zachycena” jiným nábojem. Výsledkem interakce náboje a elektrostatického pole je silové působení. 6. 7. 2003

Elektrická intenzita I Elektrické pole by bylo možné popsat pomocí vektoru síly , která by působila na jistý testovací náboj Q v každém bodě, který by nás zajímal. Tento popis by ale závisel na velikosti a polaritě testovacího náboje, který by se musel uvádět jako doplňující informace. Jinak by byl popis nejednoznačný. 6. 7. 2003

Elektrická intenzita II Vydělením testovacím nábojem je definována elektrická intenzita, která již je jednoznačnou funkcí popisovaného pole : Číselně je rovna síle, která by v daném bodě působila na jednotkový kladný náboj. Intenzita ale nemá rozměr pouhé síly. 6. 7. 2003

Elektrická intenzita III Vydělením testovacím nábojem se informace, jak pole tento náboj “cítí” stává objektivní informací o vlastnosti pole. Je nutné si uvědomit, že vzhledem k dvojí polaritě nábojů, působí síly vyvolané stejným polem na náboje různých polarit silami dokonce opačně orientovanými. 6. 7. 2003

Elektrické siločáry I Elektrické pole je trojrozměrné vektorové pole, které se v obecném případě obtížně znázorňuje. V jednoduchých symetrických příkladech, lze užít siločáry. Jsou to křivky, které jsou v každém bodě tečné k vektorům elektrické intenzity. Velikost se znázorňuje délkou nebo hustotou těchto siločar. 6. 7. 2003

Elektrické siločáry II Kladný náboj nepatrné hmotnosti by se pohyboval po určité siločáře. Záporný by se pohyboval také po siločáře, ale v opačném smyslu. Siločáry se nemohou protnout! 6. 7. 2003

Homework 1 The homework is selected for “problem” sections that are in the end of each chapter. Due Wednesday ! 21- 2, 7, 9, 14, 15 6. 7. 2003

Things to read Giancoli: Chapter 21, Sections 1-8 (ex. 7) 6. 7. 2003

Dva elektrony 1 m od sebe Jsou elektrostaticky odpuzovány, ale gravitačně přitahovány. Která síla bude větší? ^

Jeden elektron a proton 0.53 10-10 m od sebe To odpovídá jejich vzdálenosti v atomu vodíku. Takovou sílu je principiálně možné změřit makroskopicky! To je tajemství, proč hmota drží pohromadě. ^

Oddělme elektrony a protony z 1 g vodíku a dejme je na póly Země. 1 g je 1 gram-molekula H, takže máme NA=6.02 1023 obou typů částic. To je tíha naloženého nákladního automobilu. ^

Dvě 1 g Fe kuličky, 1 m od sebe se přitahují silou 10 N Dvě 1 g Fe kuličky, 1 m od sebe se přitahují silou 10 N. Jaký je jejich přebytečný náboj? Přebytečný náboj : Celkový a přebytečný /celkový náboj : ^