Statistika 2. přednáška Ing. Marcela Čapková.

Slides:



Advertisements
Podobné prezentace
Základní typy rozdělení pravděpodobnosti diskrétní náhodné veličiny
Advertisements

Základní statistické pojmy
Třídění dat OA a VOŠ Příbram. Třídění  rozdělení jednotek souboru do takových skupin, aby co nejlépe vynikly charakteristické vlastnosti zkoumaných jevů.
ŠkolaStřední průmyslová škola Zlín Název projektu, reg. č.Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávací.
„EU peníze středním školám“
POPISNÁ STATISTIKA ZPRACOVÁNÍ DAT Výpočet výběrových charakteristik
Statistika I 2. cvičení.
Indexy pojem OA a VOŠ Příbram.
Statistika Vypracoval: Mgr. Lukáš Bičík
Základní statistické pojmy a postupy
Obsah statistiky Jana Zvárová
Statistika 8. ročník Autorem materiálu je Mgr. Jana Čulíková
Sociologický výzkum.
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o. Osvoboditelů 380, Louny Číslo projektu CZ.1.07/1.5.00/ Číslo sady30Číslo DUM11.
Projekt OP VK č. CZ.1.07/1.5.00/ Šablony Mendelova střední škola, Nový Jičín Tento projekt je spolufinancován ESF a státním rozpočtem ČR. Byl uskutečněn.
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Základní škola Karviná – Nové Město tř. Družby 1383 Inovace a zkvalitnění výuky prostřednictvím ICT VY_12_INOVACE_54_8TR_M Autor: Ing. Šárka Lamatschová.
Statistický soubor, jednotka, znak.
Charakteristické rysy a typy jednorozměrného rozdělení četností.
Projekt OP VK č. CZ.1.07/1.5.00/ Šablony Mendelova střední škola, Nový Jičín Tento projekt je spolufinancován ESF a státním rozpočtem ČR. Byl uskutečněn.
ZÁKLADNÍ SOUBOR Základní soubor (populace) je většinou myšlenková konstrukce, která obsahuje veškerá data, se kterými pracujeme a není vždy snadné jej.
Kartogramy jednoduché tematické mapy s dílčími územními celky, do kterých jsou plošným způsobem znázorněna statistická data - reprezentují zásadně relativní.
Zkvalitnění kompetencí pedagogů ISŠ Rakovník IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Integrovaná.
Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační číslo projektu CZ.1.07/1.5.00/
TVORBA TÉMATICKÝCH MAP
Statistika 2 Aritmetický průměr, Modus, Medián
- Pojmy - SPSS Statistické zpracování kvantitativních šetření.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_09/C1 AutorIng. Liběna Krchňáková Období vytvořeníSrpen.
STATISTIKA Zdeňka Hudcová.
VY_32_INOVACE_21-15 Statistika 1 Základní pojmy.
ŠkolaStřední průmyslová škola Zlín Název projektu, reg. č.Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávací.
Základy zpracování geologických dat
Náhodné výběry a jejich zpracování Motto: Chceme-li vědět, jak chutná víno v sudu, nemusíme vypít celý sud. Stačí jenom malý doušek a víme na čem jsme.
K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Úvod do statistiky VY_32_INOVACE_M4r0117 Mgr. Jakub Němec.
 Zkoumáním fyzikálních objektů (např. polí, těles) zjišťujeme že:  zkoumané objekty mají dané vlastnosti,  nacházejí se v určitých stavech,  na nich.
ŠkolaStřední průmyslová škola Zlín Název projektu, reg. č.Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávací.
Základy statistiky Autor: Jana Buršová.
Statistika – základní pojmy, diagramy
Kombinatorika, pravděpodobnost, statistika
Statistika Statistika je matematická disciplína, která zpracovává výsledky hromadného pozorování (o objemu výroby, dovozu či vývozu zboží, výdajích a příjmech.
Základy pedagogické metodologie; seminář Mgr. Zdeněk Hromádka
Statistika - definice Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika je v určitém smyslu jazykem pro.
Časové řady Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí.
Základy statistiky Základní pojmy. Základy statistiky Statistiku můžeme chápat jako činnost - získávání stat. údajů, jejich zpracování a vyhodnocení jako.
Popisné charakteristiky statistických souborů. ZS - přesné parametry (nelze je měřením zjistit) VS - výběrové charakteristiky (slouží jako odhad skutečných.
Statistika Statistický soubor, jednotka, znak.. Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru.
Statistika 1.cvičení. Základní informace Ing. Daniela Krbcová Materiály ze cvičení, přednášky Skripta k předmětu,
Rozdělení četností 13. prosince 2013 VY_42_INOVACE_190224
Pravděpodobnost a matematická statistika I.
Číslo a název projektu: CZ /1. 5
Absolutní a relativní četnost
Demografické ukazatele
Odhady parametrů základního souboru
Statistika - opakovací test k procvičení
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Výukový materiál zpracován v rámci projektu EU peníze školám
Statistické srovnávání
METODOLOGIE MAGISTERSKÉ PRÁCE
Spojitá a kategoriální data Základní popisné statistiky
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
Pravděpodobnost a matematická statistika I.
Typy proměnných Kvalitativní/kategorická binární - ano/ne
Základní zpracování dat Příklad
Výukový materiál zpracován v rámci projektu EU peníze školám
Metodologie pro ISK 2 Kontrola dat Popis kategorizovaných dat
Statistika a výpočetní technika
Autor: Honnerová Helena
Statistika.
Základy statistiky.
Náhodné výběry a jejich zpracování
Transkript prezentace:

Statistika 2. přednáška Ing. Marcela Čapková

Základní statistické pojmy Popisná statistika (deskriptivní) Zabývá se sběrem údajů o všech prvcích nějaké přesně vymezené skupiny (například o všech obyvatelích jistého regionu) a jejich zpracování. Matematická statistika Je věda, zabývající se induktivními metodami určování vlastností celého statistického souboru.

Základní soubor, statistický znak, statistická jednotka Definice: Základní soubor je určitá, věcně, prostorově a časově vymezená množina všech zkoumaných prvků, u kterých zjišťujeme hodnoty jisté sledované veličiny. Sledovaná veličina se nazývá statistický znak. Prvky základního souboru nazýváme statistické jednotky. Základním souborem je určitá množina prvků (osob, zvířat, automobilů, území, podniků, událostí, materiálů, chemických prvků atd.) Př.: Studenti, kteří ve školním roce 2008/2009 skládali zkoušku z matematiky na BIVŠ. Prvky základního souboru musí splňovat 3 podmínky: Věcné vymezení Společné vlastnosti, jimiž se každý prvek souboru musí projevovat a které musí být u každého souboru stejné. Osoby skládající zkoušku z matematiky. Časové vymezení Období, do kterého musí zkoumané statistické jednotky patřit. Studenti skládají zkoušku z matematiky ve školením roce 2008/2009. Prostorové vymezení Určení regionu nebo místa, kde bude statistický průzkum (statistické šetření) probíhat. Sledujeme jen ty osoby, které studovali na BIVŠ.

Statistický znak, statistická jednotka Všechny prvky základního souboru se musí vyznačovat statistickým znakem (veličinou), který vyšetřujeme. Prvek, který tento znak nemá, do souboru nepatří. Statistická jednotka Statistické jednotky jsou nositeli vlastností základního souboru. Některé vlastnosti statistických jednotek musí být shodné – podle nich rozhodujeme, zda skutečně statistická jednotka do souboru patří nebo ne. Jiné vlastnosti jsou potom předmětem statického setření – jsou tedy statistickými znaky.

Kvalitativní a kvantitativní znak Kvalitativní znak Demografický průzkum obyvatelstva ČR v roce 2008. Základní soubor obyvatelé ČR Statistické jednotky jednotlivé osoby Statistické znaky Národnost, rodinný stav, nejvyšší dosažené vzdělání. Kvantitativní znak Průzkum peněžních vydání domácností v ČR. Všechny domácností ČR domácnosti Vydání za potraviny, vydání za průmyslové zboží, služby, splátky, méně obvyklá vydání mohou být zahrnuta do položky ostatní vydání. Uvedené znaky jsou kvantitativní a vyjadřují se v korunách.

Statistické značení X - veličina představující statistický znak - může nabývat mnoha různých hodnot xi - konkrétní hodnoty, kterých může statistika nabývat (hodnoty statistického znaku) n - počet prvků tvořící základní soubor ni - počet prvků základního souboru, majících hodnotu statistického znaku xi, absolutní četnosti, pi - relativní četnosti zi - reprezentant (zástupce) intervalu, se kterým provádíme výpočty Ze zkoušky ze statistiky získali studenti BIVŠ následující známky: 1; 1; 2; 2; 2; 2; 3; 3; 3; 4; X - známka z matematiky (statistický znak) xi - známky ni - počty studentů 1 x1 2 n1 x2 4 n2 3 x3 n3 x4 n4  Celkem * 10 n

Absolutní četnosti xi - známky ni - počty studentů xi * ni 1 2 4 8 3 9 Třídní četnost (skupinová četnost) Počet jednotek, které jsou zahrnuty do jednotlivých tříd (intervalů). Značíme je písmenem ni. Celková četnost je souhrnem třídních (skupinových) četností, značíme ji n.   (0 ≤ ni ≤ N) xi - známky ni - počty studentů xi * ni 1 2 4 8 3 9 5  Celkem 10 24 (xi * ni )

Relativní četnosti Relativní četnosti pi vyjadřují strukturu souboru, získají se jako podíl: Vlastnosti relativních četností: pi = 1 … jev jistý pi = 0 … jev nemožný V praxi se někdy násobí relativní četnosti 100; relativní četnost je pak vyjádřena v procentech (%)

Relativní četnosti xi - známky ni - počty studentů (absolutní četnosti) pi - počty studentů (relativní četnosti - ni/n) Způsob výpočtu (relativní četnosti) 1 2 0,2 2/10 4 0,4 4/10 3 0,3 3/10 0,1 1/10  Celkem 10 1,0 

Třídění Výsledkem statistického šetření bývá mnoho údajů (hodnot statistického znaku). Výsledky nebývají zapsány v použitelné formě. Proto přepisujeme údaje tak, aby forma zápisu co nejlépe vyhovovala našim potřebám. Třídění = logické uspořádání náhodného výběru do určitých skupin, nazývaných třídy.

Třídění TŘÍDY MOHOU BÝT TVOŘENY PŘÍMO HODNOTAMI pokud náhodný výběr obsahuje málo různých hodnot každá hodnota statistického znaku určuje třídu. INTERVALY pokud je v náhodném výběru mnoho různých hodnot jsou třídy určeny intervaly Počet intervalů navrhneme dle Sturgesova pravidla: Toto pravidlo často nelze striktně dodržet. Je nutné přihlédnout k charakteru naměřených dat i ke zvolené délce intervalu. Při volbě počtu intervalů, je vhodné seskupit hodnoty do 6 – 7 intervalů. Větší počet intervalů než 7 opět znepřehledňuje zatříděný soubor. Třídní znak (reprezentant; zi) Je hodnota, zastupující při výpočtech příslušnou třídu (interval). Existuje více způsobů určení třídního znaku. Nejjednodušším (ale ne příliš přesným) způsobem, je považovat za třídní znak střed příslušného intervalu. Střed intervalu stanovíme pomocí aritmetického průměru.

Třídění přímo hodnotami: Zjišťovali jsme známky udělené 10ti studentům BIVŠ ze zkoušky z matematiky ve školním roce 2008/2009. Proveďte rozdělení údajů do tříd a sestrojte vhodný typ grafu. Byly zjištěny tyto známky: 3; 2; 4; 2; 3; 1; 2; 3; 4; 2; xi ni pi 1 0,1 2 4 0,4 3 0,3 0,2 Celkem 10 1,0

Polygon četností (spojnicový graf) Na ose x jsou znázorněny hodnoty kvantitativního znaku. Na ose y jsou odpovídající absolutní (ni) resp. relativní (pi) četnosti. Graf, spojující body o souřadnicích [xi ; ni], případně [xi ; pi] pro i = 1, 2, …, k. První souřadnicí je hodnota kvantitativního znaku - xi. Druhou souřadnicí je četnost (absolutní, relativní) - ni.

k = 1 + 3,3 * logn = 1 + 3,3 * log10 = 4,3 5 tříd (intervalů) 1 2 3 4 Třídění pomocí intervalů: Zjišťovali jsme počet získaných bodů 10ti studentů BIVŠ ze zkoušky z matematiky ve školním roce 2008/2009. Proveďte rozdělení údajů do tříd a sestrojte vhodný typ grafu . Student mohl v testu získat maximálně 100 bodů. Získané body: 42; 59; 82; 28; 31; 19; 9; 91; 72; 51; Počet intervalů: k = 1 + 3,3 * logn = 1 + 3,3 * log10 = 4,3 5 tříd (intervalů) 1 2 3 4 5 6 7 8 9 10 19 28 31 42 51 59 72 82 91 k - počet tříd <xi ; xi+1) zi ni pi 1 <0;20) 10 2 0,2 <20;40) 30 3 <40;60) 50 0,3 4 <60;80) 70 0,1 5 <80;100) 90 Celkem * 1,0

Histogram (sloupcový graf) Na ose x jsou znázorněny intervaly představující třídy. Na ose y jsou odpovídající absolutní (ni) resp. relativní (pi) četnosti. Nad každým intervalem je sestrojen obdelník, jehož výška odpovídá absolutní (relativní) četnosti.

Náhodný výběr Cíl statistického zkoumání poznání vlastností základního souboru. Základní soubor má často velký rozsah zkoumání všech jeho prvků by bylo často neuskutečnitelné, pracné, či nákladné. Proto se statistické zjišťování realizuje jen u vybraných prvků (na vzorku) Tyto vybrané prvky ze základního souboru tvoří: výběrový soubor, nebo-li výběr Výběr by měl být co nejlepším představitelem základního souboru, ze kterého byl vytvořen Na základně poznání vlastností výběrového souboru se usuzuje na vlastnosti celého základního soboru Tomuto postupu uvažování se říká statistická indukce (uvažování z části na celek)

Reprezentativní výběr Podmínky reprezentativního výběru Jednotlivé prvky základního souboru (statistické jednotky) jsou vybírány nezávisle na sobě. Všechny prvky pocházejí ze stejného základního souboru. Každý prvek základního souboru má stejnou možnost dostat se do výběru

Výběrové charakteristiky polohy Určují přibližně polohu hodnot náhodného výběru (a tím i základního souboru) na číselné ose.

Výběrové charakteristiky polohy pro nezatříděný soubor Nechť máme 6 studentů Střední průmyslové školy. Zjišťovali jsme, jaké získali známky z matematiky. Student Známka z matematiky A (Adam) 2 B (Bohuslav) C (Ctirad) D (Daniel) 3 E (Emil) 4 F (Filip) 5 Celkem 18

Výběrové charakteristiky variability Říkají, jak se jednotlivé hodnoty statistického znaku liší od sebe navzájem. Odlišnost jednotlivých hodnot nazýváme Variabilita nebo měnlivost R = Xmax - Xmin

Výběrové charakteristiky variability – nezatříděný soubor Nechť máme 6 studentů Střední průmyslové školy. Zjišťovali jsme, jaké získali známky z matematiky. Student Známka z matematiky A (Adam) 2 B (Bohuslav) C (Ctirad) D (Daniel) 3 E (Emil) 4 F (Filip) 5 Celkem 18

Výběrové charakteristiky variability pro nezatříděný soubor Student Známka (xi) (xi - `x) (xi - `x)² |xi - `x| (xi - `x)3 (xi - `x)4 A (Adam) 2 2-3,00 -1,00 1,00 B (Bohuslav) C (Ctirad) D (Daniel) 3 3-3,00 0,00 E (Emil) 4 4-3,00 F (Filip) 5 5-3,00 2,00 4,00 8,00 16,00 Celkem 18 6,00 20,00

Charakteristiky variability Rozptyl Směrodatná odchylka Absolutní odchylka Variační koeficient Variační rozpětí R = XMAX – XMIN = 5 - 2 = 3 Koeficient šikmosti (asymterie) Koeficient špičatosti (excesu)

Výpočet charakteristik pro zatříděný soubor Byl zjišťován prospěch z matematiky studentů 1. ročníku studijní skupiny 1BP-VS na BIVŠ v roce 2006. Tabulka udává zjištěné údaje. Pomocný výpočet pro: n `x s² A Sk Ek Známka (xi) Počet studentů (ni) xi*ni (xi - `x)ni (xi - `x) (xi - `x)²ni |xi - `x|ni (xi - `x)3ni (xi - `x)4ni 1 2 -4,12 -2,06 8,48 4,12 -17,45 35,93 3 6 -3,18 -1,06 3,36 3,18 -3,56 3,77 4 12 -0,24 -0,06 0,01 0,24 0,00 8 32 7,53 0,94 7,09 6,67 6,28 Celkem 17 52 -2,24 18,94 15,06 -14,35 45,98

Kvantily Kvantil je hodnota proměnné, kdy hodnoty které jsou menší (a stejné), tvoří určitou stanovenou část rozsahu statistického souboru. Např.: 1 %; 25 %; 50 %; 90 % apod. Hodnoty, které jsou větší (a stejné), tvoří zbývající část rozsahu souboru. Např.: 99 %; 75 %; 50 %; 10% apod. Mezi nejčastěji používané kvantily patří: Kvartily, Decily, Percentily.

Kvartily Jsou 3 hodnoty proměnné, které rozdělují neklesající řadu hodnot proměnné na 4 stejné části. 1. kvartil = dolní kvartil x25 je 25 % kvantil, odděluje 1/4 statistických jednotek s nejnižší hodnotou proměnné x od ¾ jednotek s vyšší (stejnou) hodnotou proměnné x. 2. kvartil = prostřední kvartil = medián x50 je 50 % kvantil. 3. kvartil = horní kvartil x75 je 75 % kvantil.

Decily Tvoří 9 hodnot proměnné, které rozdělují neklesající řadu hodnot proměnné na 10 stejně četných částí: 1. decil x10 … je 10 % kvantil, 2. decil x20 … je 20 % kvantil, 3. decil x30 … je 30 % kvantil , … … 9. decil x90 … je 90 % kvantil.

Percentily Tvoří 99 hodnot proměnné, které rozdělují neklesající řadu hodnot proměnné na 100 stejně četných částí: 1. percentil … je 1 % kvantil 2. percentil … je 2 % kvantil … … 99. percentil … je 99 % kvantil

Výpočet kvantilů Pokud hledáme stanovujeme jakoukoliv hodnotu kvantilu, musíme mít vždy hodnoty náhodného seřazeny do neklesající posloupnosti. Tzn. Hodnoty musí být seřazeny podle velikosti od nejmenší hodnoty po největší.

Výpočet kvantilů z intervalového rozdělení četností Vzorec pro výpočet: ; kde: xp = hodnota hledaného kvantilu, xd = dolní hranice intervalu, xh = horní hranice intervalu, id = kumulativní relativní četnost odpovídající xd, ih = kumulativní relativní četnost odpovídající xh.

Výpočet kvantilů z intervalového rozdělení četností

Výpočet kvantilů z intervalového rozdělení četností

Výpočet kvantilů v případě zadaného absolutního výčtu prvků Vzorec pro výpočet: ; kde: zp = pořadí hledaného kvantilu, n = rozsah základního souboru (rozsah náhodného výběru) p = % hledaného kvantilu, kolika procentní kvantil hledáme.

Výpočet kvantilů v případě zadaného absolutního výčtu prvků

Výpočet kvantilů v případě zadaného absolutního výčtu prvků

Výpočet kvantilů Výpočet kvantilů