Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Algebraické výrazy: lomené výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Vzájemná poloha kružnice a přímky
Rovnice s absolutními hodnotami
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu www. rvp
Zobrazení dutým zrcadlem
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Zlomky a desetinná čísla.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustava rovnic Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
Definiční obory. Množiny řešení. Intervaly.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Exponenciální rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
Vzájemná poloha dvou kružnic
Pár užitečných rad, jak postupovat při převádění jednotek obsahu
(řešení pomocí diskriminantu)
Rovnice s parametrem. Vypočítejte rozměry obdélníku, pro který platí: Délku zmenšíme o 5 m a šířku zvětšíme o 10 m, a tím se obsah zvětší o 300 m 2. a)
PROVĚRKY Převody jednotek času.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ryze kvadratická rovnice
Rozklad čísel 6 – 10 – doplňování varianta A
Lineární funkce VY_32_INOVACE_056_Lineární funkce
Kvadratická rovnice.
Funkce s absolutní hodnotou Využití grafu funkce při řešení rovnic a nerovnic s absolutní hodnotou Dostupné z Metodického portálu ISSN: ,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustavy lineárních rovnic Matematika 9. ročník Creation IP&RK.
Nerovnice Ekvivalentní úpravy.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Lineární rovnice Druhy řešení.
Soustava lineárních rovnic
Kvadratická rovnice Vlastnosti kořenů kvadratické rovnice
Dostupné z Metodického portálu www. rvp
Soustava dvou lineárních rovnic se dvěma neznámými
Lineární rovnice Druhy řešení.
Lineární rovnice Druhy řešení.
LOGARITMICKÉ ROVNICE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN:  ,
Soustava dvou lineárních rovnic se dvěma neznámými
Řešení nerovnic Lineární nerovnice
Řešení nerovnic Lineární nerovnice 1
Řešení nerovnic Lineární nerovnice
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Soustavy lineárních rovnic
Procenta % Prezentace je zaměřená na procvičování procent užitím trojčlenky. Obsahuje celkem řešených 15 příkladů. Mgr. Eva Černá, Plzeň Autor © Eva Černá.
Definiční obory. Množiny řešení. Intervaly.
27 ROVNICE – POČET ŘEŠENÍ.
Lineární rovnice Druhy řešení.
Soustava dvou lineárních rovnic se dvěma neznámými
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Soustava dvou lineárních rovnic se dvěma neznámými
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Lineární rovnice Druhy řešení

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Všechny možnosti řešení si představíme a především prakticky ukážeme na konkrétních příkladech. Pokusíme se tedy vyřešit následující lineární rovnice a rozebereme výsledky, ke kterým dospějeme:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Máme na světě první typ možného řešení. x = -2 Jinými slovy: x = „reálné číslo“ Takový výsledek znamená, že rovnice má právě jedno řešení. x = 5 x = 20 y = 1 y = -5 4 = a -2,7 = x y = - __ 5 2 y = __ 3 4

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zkouška příkladu č. 1: Ověříme správnost řešení dosazením čísla -2. Po dosazení čísla -2 za neznámou nastává rovnost. Číslo -2 je tedy řešením dané rovnice!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zkusíme dosadit něco jiného, např. číslo 2. Levá strana se nerovná pravé. -5 se 11 nerovná! Po dosazení čísla 2 za neznámou rovnost neplatí. Číslo 2 tedy nemůže být řešením dané rovnice!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. 0 se -1 nerovná! Nerovnají se tedy ani levá a pravá strana rovnice. Co to znamená?

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Máme na světě druhý typ možného řešení. 0.x = -1 Jinými slovy: nepravda, nepravdivý výrok, nerovnost Takový výsledek znamená, že rovnice nemá řešení. -5 ≠ 5 2 ≠ ≠ 1 -0,5 ≠ -5 4 ≠ 0,4 -2,7 ≠ 9 1 ≠ - __ ≠ __ = -1 Neexistuje žádné číslo, po jehož dosazení za neznámou do dané rovnice by nastala rovnost levé a pravé strany.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. 0 se rovná 0! Co to z hlediska řešení rovnice znamená?

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Máme na světě třetí typ možného řešení. 0.x = 0 Jinými slovy: pravda, pravdivý výrok, rovnost Takový výsledek znamená, že rovnice má nekonečně mnoho řešení. 5 = 5 20 = 20 1 = 1 -0,5 = -0,5 0,4 = 0,4 -2,7 = -2,7 0 = 0 Rovnost levé a pravé strany rovnice nastane, dosadíme-li do rovnice za neznámou jakékoliv číslo. = __ = 45

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ověření příkladu č. 3: Do rovnice můžeme dosadit jakékoliv číslo. Zkusme třeba číslo 1. Dosazením jsme ověřili, že číslo 1 je řešením dané rovnice. ( Po dosazení za neznámou do zadané rovnice, nastává rovnost levé a pravé strany – rovnost platí.)

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ověření příkladu č. 3: Zkusíme dosadit například ještě číslo -1. Dosazením jsme ověřili, že i číslo -1 je řešením dané rovnice. ( Po dosazení za neznámou do zadané rovnice, nastává rovnost levé a pravé strany – rovnost platí.)

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Shrnutí: například: x = 2 1. Rovnice má právě jedno řešení (jeden kořen). Existují tři druhy možných řešení lineárních rovnic. Jaké a jak je poznáme? Existuje jediné číslo, po jehož dosazení za neznámou do dané rovnice nastane rovnost levé a pravé strany. například: 0x = 2 2. Rovnice nemá žádné řešení. Neexistuje žádné číslo, po jehož dosazení za neznámou do dané rovnice by nastala rovnost levé a pravé strany. například: 0x = 0 3. Rovnice má nekonečně mnoho řešení. Existuje nekonečně mnoho čísel (všechna čísla), po jejichž dosazení za neznámou do dané rovnice nastane rovnost levé a pravé strany.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A teď si to zkuste sami. Rovnice nemá řešení. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A ještě jednou. Rovnice má právě jedno řešení. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zkouškou ověříme správnost našich výpočtů. Zkouškou jsme ověřili, že řešením je skutečně číslo 5. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A naposled. Rovnice má nekonečně mnoho řešení. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.