FII–5 Mikroskopický pohled na elektrický proud

Slides:



Advertisements
Podobné prezentace
Elektrický proud v kovech
Advertisements

Elektrické obvody – základní analýza
Elektrostatika.
Elektrická práce. Elektrická energie
Polovodiče typu N a P Si Si Si Si Si Si Si Si Si
Základy elektrotechniky
Obvody střídavého proudu
Nauka o elektrických vlastnostech těles
III. Stacionární elektrické pole, vedení el. proudu v látkách
I. Statické elektrické pole ve vakuu
Vedení el. proudu v různých prostředích
Výsledný odpor rezistorů spojených v elektrickém poli vedle sebe
Přednáška 12 Diferenciální rovnice
Tato prezentace byla vytvořena
POLOVODIČE.
Tato prezentace byla vytvořena
Základy mechaniky tekutin a turbulence
MODEL DVOJBRANU - HYBRIDNÍ PARAMETRY
FII–9 Stejnosměrné obvody I
Základy elektrotechniky Přechodové jevy
Název materiálu: ELEKTRICKÉ POLE – výklad učiva.
II. Statické elektrické pole v dielektriku
FII-3 Elektrický potenciál Hlavní body Konzervativní pole. Existence elektrického potenciálu. Práce vykonaná na náboji v elektrickém.
Obvody stejnosměrného proudu
OHMŮV ZÁKON PRO ČÁST ELEKTRICKÉHO OBVODU.
Ohmův zákon, Kirchhoffovy zákony a jejich praktické aplikace
O elektrických veličinách v sítích
Tepelné vlastnosti dřeva
9. ročník Polovodiče Polovodiče typu P a N.
RLC Obvody Michaela Šebestová.
V. Nestacionární elektromagnetické pole, střídavé proudy
26. Kapacita, kondenzátor, elektrický proud
Prof. Ing. Karel Pokorný, CSc.
Elektrický proud Elektrický proud v kovech
MODEL DVOJBRANU - ADMITANČNÍ PARAMETRY
Je dán dvojbran, jehož model máme sestavit. Předpokládejme, že ve zvoleném klidovém pracovním bodě P 0 =[U 1p ; I 1p ; U 2p ; I 2p ] jsou známy jeho diferenciální.
FII–13 Magnetické pole způsobené proudy
33. Elektromagnetická indukce
magnetické pole druh silového pole vzniká kolem: vodiče s proudem
FII-4 Elektrické pole Hlavní body Vztah mezi potenciálem a intenzitou Gradient Elektrické siločáry a ekvipotenciální plochy Pohyb.
II–2 Mikroskopický pohled na elektrický proud.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
FIIFEI-08 Elektromagnetická indukce II Přechodové jevy
FIIFEI-10 Obvody stejnosměrných a střídavých proudů II složitější
Pokročilá fyzika C803 fIIp_03 Elektrická vodivost ve vodičích
ELEKTRICKÉ POLE.
IONIZACE PLYNŮ.
1. část Elektrické pole a elektrický náboj.
Základy Elektrotechniky
ELEKTRICKÝ PROUD V PEVNÝCH LÁTKÁCH
VY_32_INOVACE_08-12 Spojování rezistorů.
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Elektrický proud.
Kirchhoffovy zákony Projekt CZ.1.07/1.1.16/ Motivace žáků ZŠ a SŠ pro vzdělávání v technických oborech.
Elektrický proud Elektrický proud kovech Ohmův zákon
Elektrický obvod. Struktura prezentace otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Ohmův zákon. Struktura prezentace otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Jordánová Marcela Název prezentace (DUMu): 7. Elektrický proud v pevných látkách - odpor, výkon Název sady:
ELEKTROTECHNIKA Elektronová teorie. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Základy elektrotechniky Elektromagnetická indukce
FYZIKÁLNÍ PODSTATA ELEKTRICKÉ VODIVOSTI
Název školy Základní škola Jičín, Husova 170 Číslo projektu
POLOVODIČE SVĚT ELEKTRONIKY.
OHMŮV ZÁKON PRO ČÁST ELEKTRICKÉHO OBVODU.
změna tíhové potenciální energie = − práce tíhové síly
ELEKTRICKÝ POTENCIÁL ELEKTRICKÉ NAPĚTÍ.
Soustavy lineárních rovnic
IONIZACE PLYNŮ.
Definiční obory. Množiny řešení. Intervaly.
Odpor.
Transkript prezentace:

FII–5 Mikroskopický pohled na elektrický proud FII–5 Mikroskopický pohled na elektrický proud. Základy řešení stejnosměrných obvodů. 7. 5. 2005

Hlavní body Měrný odpor a vodivost. Vodiče, polovodiče a izolátory Rychlost pohybujících se nábojů. Ohmův zákon v diferenciální formě Teplotní závislost rezistivity Seriové a paralelní zapojení rezistorů Obvody a Kirchhoffovy zákony 7. 5. 2005

Měrný odpor a vodivost I Mějme ohmický vodič, tedy takový, jaký splňuje Ohmův zákon: U = RI Rezistance R závisí na geometrii a na vlastnostech materiálu vodiče. Mějme vodič délky l a průřezu S, definujeme měrný odpor (rezistivitu)  a její reciprokou hodnotu, měrnou vodivost  : 7. 5. 2005

Měrný odpor a vodivost II Měrný odpor je schopnost látek vzdorovat průtoku elektrického proudu. Při stejném tvaru je k dosažení určitého proudu u látek s velkou rezistivitou potřeba větší napětí. Jednotkou rezistivity v SI je 1  m. Měrná vodivost je naopak schopnost vést proud. Jednotkou měrné vodivosti v SI je 1 -1m-1. Jednotka vodivosti je siemens 1 Si = 1 -1. 7. 5. 2005

Měrný odpor a vodivost III materiál  [m]  [K-1] stříbro 1.59 10-8 0.0061 měď 1.64 10-8 0.0068 Al 2.65 10-8 0.00429 W 5.6 10-8 0.0045 Fe 9.71 10-8 0.00651 grafit 3 – 60 10-5 0.005 Si 0.1 – 60 0.07 sklo 109 - 1012 7. 5. 2005

Volné nosiče nábojů I Obecně jsou volnými nosiči náboje nabité částice nebo pseudočástice, které se mohou ve vodičích volně pohybovat. Mohou jimi být elektrony, díry a různé ionty. Vodivostní vlastnosti látek závisí na tom, jak volně se nosiče mohou pohybovat, což hluboce souvisí se strukturou příslušné látky. 7. 5. 2005

Volné nosiče náboje II V pevných vodičích, sdílí každý atom své nejslaběji vázané (valenční) elektrony s ostatními atomy. Ty se tedy mohou více nebo méně volně pohybovat v celém objemu vodiče. V nulovém elektrickém poli se elektrony pohybují chaoticky velkými rychlostmi náhodnými směry a často se sráží s atomy. Připomíná to chaotický pohyb molekul plynu, což vede k používání (ne úplně přesného) názvu elektronový plyn. 7. 5. 2005

Volné nosiče náboje III V nenulovém poli mají elektrony též jistou relativně malou driftovou rychlost v opačném směru než je směr pole. Nepružné srážky s atomy jsou hlavním mechanismem zodpovědným za rezistivitu (kovů při normální teplotě) a samozřejmě také za ztráty energie (výkonu) ve vodičích. 7. 5. 2005

Diferenciální tvar Ohmova z. I Uvažujme opět vodič o délce l a průřezu S s nosiči náboje jednoho typu. Při jistém napětí protéká konstantní proud, který závisí na jejich: hustotě n, tedy počtu v jednotce objemu náboji q driftové rychlosti vd 7. 5. 2005

Diferenciální tvar Ohmova z. II V úseku délky x vodiče je náboj Q : Q = n qx S Objem, který proteče určitou plochou za jednotku času je Sx/t = vd S , takže proud I je : I = Q/t = n q vd S = j S Kde j je takzvaná hustota proudu. S použitím Ohmova zákona a definice vodivosti : I = j S = U/R = El  S/l  j = E 7. 5. 2005

Diferenciální tvar Ohmova z. III j = E To je Ohmův zákon v diferenciálním tvaru. Na rozdíl od Ohmova zákona ve tvaru integrálním obsahuje pouze mikroskopické a negeometrické veličiny. To je počáteční bod pro teorie, které studují vodivost. Obecně platí ve vektorové podobě: 7. 5. 2005

Diferenciální tvar Ohmova z. IV Znamená, že velikost hustoty proudu závisí na schopnosti látky vést proud a intenzitě elektrického pole a náboje se (efektivně) pohybují podél elektrických siločar. Pro hlubší porozumění je třeba mít alespoň hrubou představu a velikostech parametrů, které se v Ohmově zákoně vyskytují. 7. 5. 2005

Příklad I Mějme proud 10 A, protékající měděným vodičem o průřezu 3 10-6 m2. Jaká je hustota proudu a driftová rychlost nosičů náboje, přispívá-li každý atom jedním volným elektronem? atomová váha mědi je 63.5 g/mol. hustota mědi je  = 8.95 g/cm3. 7. 5. 2005

Příklad II V 1 m3 je 8.95 106/63.5 = 1.4 105 mol. Každý atom přispívá jedním volným elektronem. Hustota nosičů náboje tedy je : n = 8.48 1028 elektronů/m3. Driftová rychlost vd : vd = I/Snq = 10/(8.48 1028 1.6 10-19 3 10-6) = 2.46 10-4 m/s 7. 5. 2005

Mikroskopický obrázek Vidíme, že driftová rychlost je velmi malá. Vzdálenost jednoho metru by elektron překonal za 68 minut! Pro srovnání, rychlost chaotického pohybu elektronů je řádově 106 m/s. Takže v látce existují proudy řádově 1012 A, tečou ale náhodnými směry a navzájem se kompenzují, a relativně malé proudy způsobené elektrickým polem. Je to, jako v případě nabíjení vodičů, případ velmi malé nerovnováhy. 7. 5. 2005

Otázka Driftová rychlost nosičů náboje je řádově 10-4 m/s. Jak je možné, že se žárovka v místnosti rozsvítí po zapnutí vypínače prakticky okamžitě? 7. 5. 2005

Odpověď Sepnutím vypínače, připojíme napětí na konce vodiče, čímž vytvoříme elektrické pole poděl něj. To uvede do pohybu nosiče náboje. Protože elektrické pole se vytvoří rychlostí světla c = 3 108 m/s, nosiče náboje se dají do pohybu (prakticky) současně. 7. 5. 2005

*Klasický model I Zkusme vysvětlit driftovou rychlost základnějšími parametry. Předpokládejme, že v průběhu jistého průměrného času  mezi srážkami jsou nosiče urychlovány elektrickým polem. A každá nepružná srážka je zastaví. Použijeme vztah známý z elektrostatiky : vd = qE/m 7. 5. 2005

*Klasický model II Dosadíme do vztahu pro hustotu proudu : j = n q vd = n q2  E/m Obdržíme měrnou vodivost a odpor :  = n q2  /m  = 1/ = m/nq2 7. 5. 2005

*Klasický model III Zdá se, že jsme nahradili jedny parametry druhými V posledních vztazích ale vystupuje jediný neznámý parametr průměrný čas mezi sražkami, který může být dán do souvislosti se střední rychlostí, závislou na teplotě, kterou předpovídají dobře zavedené teorie, podobné těm, které vysvětlují podobné vlastnosti plynů. Tento model předpovídá závislost měrné vodivosi na teplotě, ale ne na elektrickém poli. 7. 5. 2005

Teplotní závislost měrného odporu I Ve většině případů je teplotní chování blízké lineárnímu . Definujeme změnu měrného odporu vzhledem k jisté referenční teplotě t0 (0 nebo 20° C):  = (t) – (t0) Relativní změna měrného odporu je přímo úměrná změně teploty : 7. 5. 2005

Teplotní závislost měrného odporu II  [K-1] je lineární teplotní koeficient. Je určen teplotní závislostí n a vd. Může být i záporný, např. u polovodičů (ale ty mají chování exponencíální). V případě většího roszahu teplot nebo vyšší požadované přesnosti musíme přidat další (kvadratický) člen : /(t0) =  t +  (t)2 + …  (t) = (t0)(1 +  t +  (t)2 + …) 7. 5. 2005

Hlavní body Rezistory zapojené sériově a paralelně Sítě rezistorů Obecná topologie obvodů Kirchhoffovy zákony – fyzikální význam Použití Kirchhoffových zákonů Princip superpozice Metoda obvodových proudů 7. 5. 2005

Seriové zapojení rezistorů Rezistory, zapojenými seriově, prochází stejný společný proud. Současně napětí na všech dohromady musí být součet napětí na rezistorech jednotlivých. Seriové zapojení tedy můžeme nahradit jedním rezistorem, pro jehož rezistanci platí : R = R1 + R2 + … 7. 5. 2005

Paralelní zapojení rezistorů Jsou-li rezistory zapojeny paralelně, je na každém stejné společné napětí. Současně se celkový proud dělí mezi ně a je tedy součtem proudů jednotlivými rezistory. Paralelní zapojení tedy můžeme nahradit jedním rezistorem, pro jehož rezistanci platí 1/R = 1/R1 + 1/R2 + … 7. 5. 2005

Obecná síť rezistorů Nejprve nahradíme seriově zapojené rezistory, potom paralelně. *Zapojení do trojúhelníku nahradíme zapojením do hvězdy : r = rbrc/(rarb + rbrc + rcra) *Tento vztah vyplývá z cyklické záměny : r + r = rc(ra + rb)/(rarb + rbrc + rcra) 7. 5. 2005

Obecná topologie obvodů Obvody se skládají z : Větví – vodiče se zdroji a rezistory Uzlů – body, kde jsou propojeny alespoň tři větve. Smyček – všechny možné uzavřené cesty rozličnými větvemi a uzly, které se neprotínají. 7. 5. 2005

Řešení obvodů Úplné řešení obvodu znamená nalezení proudu v každé jeho větvi. Někdy nás ale zajímají jenom některé z nich. Při řešení obvodů je nutné najít nezávislé smyčky. Na to existují geometrické metody a možností je obvykle několik. Smyslem je nalézt dostatečný počet lineárně nezávislých rovnic pro proudy. 7. 5. 2005

Kirchhoffovy zákony I Fyzikálním základem pro řešení obvodů jsou Kirchhoffovy zákony. Vyjadřují obecné vlastnosti, vyplývající ze zachování náboje a konzervativnosti stacionárního elektrického pole. V nejjednodušší formě platí jen pro stacionární pole a proudy. Mohou ale být snadno zobecněny pro určité typy polí časově proměnných, např. pro střídavé proudy harmonického průběhu. 7. 5. 2005

Kirchhoffovy zákony II První Kirchhoffův zákon, zákon pro uzly, říká, že součet proudů přitékajících do jistého uzlu se musí rovnat součtu proudů z tohoto uzlu vytékajících. Je to speciální případ zákona zachování náboje. Ten je obecněji je vyjádřen rovnicí kontituity náboje, která popisuje navíc směry a připouští nabíjení nebo vybíjení bodu. S analogickým zákonem jsme se setkali v hydrodynamice. 7. 5. 2005

Kirchhoffovy zákony III Druhý Kirchhoffův zákon, zákon pro smyčky, říká, že součet napětí (rozdílů potenciálů) na každém prvku v každé uzavřené smyčce se musí rovnat nule. Zákon je založen na existenci potenciálu v obvodech stacionárního elektrického proudu (které je konzervativní) a zachování potenciální energie ve smyčce . 7. 5. 2005

Použití Kirchhoffových zákonů I Musíme sestavit soustavu nezávislých rovnic, jejichž počet bude roven počtu větví : Nejprve si označíme všechny proudy a každému přiřadíme určitý směr. Pokud se zmýlíme, vyjde nám proud na závěr záporný. Napíšeme rovnice, vyplývající z I. KZ pro všechny uzly kromě posledního, v němž bychom dostali lineárně závislou rovnici. Napíšeme rovnici z II. KZ pro všechny nezávislé smyčky. 7. 5. 2005

Příklad I-1 Obvod má 3 větve, 2 uzly a 3 smyčky, z nichž 2 jsou nezávislé. Protože zdroje jsou ve dvou větvích, nemůžeme problém jednoduše převést na serio-paralelní zapojení rezistorů. 7. 5. 2005

Příklad I-2 Nazveme proudy a přiřadíme jim směr. Nechme všechny opouštět uzel a, takže alespoň jeden musí vyjít záporný. Označme polarity na rezistorech podle předpokládaných směrů proudů. Sestavme rovnici pro první uzel a : I1 + I2 + I3 = 0. 7. 5. 2005

Příklad I-3 Rovnice pro uzel b by vyšla stejná, takže další rovnice musíme najít ze smyček. Vyjdeme např. z bodu a větví 1 a vrátíme se větví 3 : -U1 + R1I1 – R3I3 = 0 Potom podobně z a větví 2 a nazpět větví 3: U2 + R2I2 – R3I3 = 0 7. 5. 2005

Příklad I-4 Při cestě kolem smyček musíme zachovat určitý systém, například psát všechny výrazy na jednu stranu rovnice se znaménkem podle polarity napětí, ke kterému u příslušného prvku přijdeme nejprve. To je ekvivalentní práci, kterou dodá pole na přenesení jednotkového náboje přes tento prvek. Dále řešíme jedním z mnoha způsobů: Z první rovnice vyjádříme : -I3 = I1 + I2 a dosadíme do dalších dvou : U1 = (R1 + R3)I1 + R3I2 -U2 = R3I1 + (R2 + R3)I2 7. 5. 2005

Příklad I-5 Numericky máme : 25I1 + 20I2 = 10 20I1 + 30I2 = -6 Můžeme postupovat několika způsoby a dostaneme : I1 = 1.2 A, I2 = -1 A, I3 = -0.2 A Vidíme, že proudy I2 a I3 mají ve skutečnosti opačný směr, než jsme původně předpokládli. 7. 5. 2005

Použití Kirchhoffových zákonů II Kirchhoffovy zákony nejsou pro praktické řešení obvodů příliš užitečné, protože je nutné sestavit a vyřešit stejný počet rovnic, jako je počet větví. Lze ale ukázat, že k úplněmu řešení obvodu postačí stejný počet rovnic, jako je nezávislých smyček, což je obecně méně! 7. 5. 2005

*Příklad II-1 I v našem předchozím, jednoduchém příkladu jsme museli řešit systém tří rovnic, který je praktickou hranicí, kterou lze vyřešit relativně jednoduše ručně. Ukážeme, že pro nepatrně komplikovanější obvod by již počet rovnic byl příliš velký na ruční řešení. 7. 5. 2005

*Příklad II-2 Nyní máme 6 větví, 4 uzly a mnoho smyček, z nichž jsou 3 nezávislé. Kirchhoffovy zákony nám poskytnou 3 nezávislé rovnice pro uzly a 3 pro smyčky. Máme tedy systém 6 rovnic o 6 neznámých. Řešení je principiálně možné, ale velmi obtížné. 7. 5. 2005

Princip superpozice I Princip superpozice lze použít tak, že všechny zdoje pracují nezávisle. Pokaždé můžeme zkratovat všechny zdroje až na j-tý a najít proudy Iij v každé větvi. Opakujeme to pro všechny zdroje a nakonec pro proud určitou větví platí : Ii = Ii1 + Ii2 + Ii3 + … 7. 5. 2005

Princip superpozice II Jednoduchá ilustrace: Máme zdroj 12 V, jeho kladná elektroda je spojena s kladnou elektrodou druhého zdroje 6 V. Záporné elektrody obou zdrojů jsou spojeny přes odpor 3  . První zdroj generuje proud I1 = +4 A Druhý zdroj generuje proud I2 = –2 A Oba zdroje působí současně , tedy celkový proud je: I = I1 + I2 = +2 A 7. 5. 2005

*Příklad I-6 Vraťme se k našemu prvnímu příkladu. Ponechme první zdroj a zkatujme druhý. Získáme jednoduché serio-paralelní zapojení rezistorů, v němž snadno nalezneme proudy : I11= 6/7 A; I21= -4/7 A; I31= -2/7 A 7. 5. 2005

*Příklad I-7 Opakujeme totéž s druhým zdrojem : I12= 12/35 A; I22= -3/7 A; I32= 3/35 A Celkově dostaneme : I1= 1.2 A; I2= -1 A; I32= -0.2 A Výsledek je stejný jako předchozí. Princip superpozice je užitečný, když chceme například zjistit, co se stane když zdvojnásobíme napětí prvního zdroje. 7. 5. 2005

Metoda obvodových proudů Existuje několik pokročilejších metod, které používají pouze nezbytný počet rovnic, potřebných k vyřešení daného obvodu. Nejelegantnější a nejjednodušší na použití i pamatování je metoda obvodových proudů. Je založena na myšlence, že obvodem tečou proudy v nezávislých smyčkách a proud v každé větvi je jejich superpozicí. 7. 5. 2005

Příklad I-8 V našem příkladě existují dva nezávislé obvodové proudy, např. I ve smyčce a(1)(3) a I ve smyčce a(2)(3). Proudy ve větvích mohou být považovány za jejich superpozici : I1= I I2= I I3= -I  - I 7. 5. 2005

*Příklad I-9 Napíšeme rovnice pro smyčky : (R1 + R3)I + R3I = U1 R3I + (R2 + R3) I = -U2 Po dosazení numerických hodnot máme : I = 1.2 A a I = -1A, které dají opět stejné proudy proudy v obvodech : I1 = 1.2 A, I2 = -1 A, I3 = -0.2 A 7. 5. 2005

*Příklad I-10 Výsledek je stejný, ale řešili jsme soustavu pouze dvou rovnic o dvou neznámých. Výhoda je ještě lépe vidět na druhém příkladu. 7. 5. 2005

*Příklad II-3 Proud I bude ve smyčce DBAD, I v DCBD a I v CBAC. Potom : I1 = I - I  I2 = I - I I3 = I - I I4 = -I I5 = I I6 = I 7. 5. 2005

*Příklad II-4 Smyčková rovnice v DBAD by byla : -U1 + R1(I - I) – U3 + R3(I - I) + R5I = 0 (R1 + R3 + R5)I - R1I - R3I  = U1 + U3 Podobně ve smyčkách DCBD a CABC: -R1I + (R1 + R2 + R4)I - R2I  = U4 - U1 – U2 -R3I - R2I +(R2 + R3 + R6)I  = U2 - U3 Rovnice se sestavují poněkud obtížněji ale jsou jenom tři, takže je můžeme vyřešit ručně! 7. 5. 2005

*Příklad II-5 Numericky máme : 12 –2 –5  I = 51 Řešením dostaneme I, I, I a s jejich pomocí nakonec vypočteme proudy v jednotlivých větvích I1 , I2 … 7. 5. 2005