Molekulární genetika DNA a RNA.

Slides:



Advertisements
Podobné prezentace
6. Nukleové kyseliny Nukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. Hlavní jejich funkce je uchování genetické informace.
Advertisements

Vysokomolekulární látky v buňce Replikace, transkripce a translace DNA
Molekulární základy dědičnosti
Báze Struktura NK DNA RNA konec.
Digitální učební materiál
Molekulární základy dědičnosti
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
GENETIKA NUKLEOVÉ KYSELINY DNA, RNA
NUKLEOVÉ KYSELINY Základ života.
Nukleové kyseliny AZ-kvíz
RISKUJ ! Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Pravidla hry Hra je rozdělena do tří částí
NUKLEOVÉ KYSELINY BIOCHEMIE.
VY_32_INOVACE_05_PVP_257_Hol
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu: VY_32_INOVACE_CHE_420.
Digitální výukový materiál zpracovaný v rámci projektu „EU peníze školám“ Projekt:CZ.1.07/1.5.00/ „SŠHL Frýdlant.moderní školy“ Škola:Střední škola.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Pavlína Koch ová CZ.1.07/1.5.00/ Autor materiálu:RNDr. Pavlína Kochová Datum.
Biologie buňky chemické složení.
Biologie buňky chemické složení.
NUKLEOVÉ KYSELINY [6], [7]
Proteosyntéza RNDr. Naďa Kosová.
Registrační číslo projektu: CZ.1.07/1.5.00/ Číslo DUM:
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Digitální výukový materiál zpracovaný v rámci projektu „EU peníze školám“ Projekt:CZ.1.07/1.5.00/ „SŠHL Frýdlant.moderní školy“ Škola:Střední škola.
Struktura, vlastnosti a typy nukleových kyselin
Nukleové kyseliny Struktura DNA a RNA Milada Roštejnská Helena Klímová
Nukleové kyseliny NA = nucleic acid Reprodukce organismů
METABOLISMUS BÍLKOVIN II Anabolismus
NUKLEOVÉ KYSELINY A JEJICH METABOLISMUS
Nukleové kyseliny Nukleové kyseliny (NA) jsou makromolekulární látky a spolu s bílkovinami tvoří nejdůležitější látky v živé hmotě. Funkce: V molekulách.
Genetika.
1 Škola:Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_BIOLOGIE 2_11 Tematická.
Molekulární základy dědičnosti
Molekulární genetika.
Nukleové kyseliny RNDr. Naďa Kosová.
Didaktické testy z biochemie 6
Od DNA k proteinu.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_239.
GENETICKÁ INFORMACE je informace, která je primárně obsažena v nukleotidové sekvenci v nukleotidových sekvencích jsou obsaženy následující informace: o.
Fyziologie reprodukce a základy dědičnosti FSS 2009 zimní semestr D. Brančíková.
EXPRESE GENETICKÉ INFORMACE Transkripce
Nukleové kyseliny Přírodní látky
Úvod do studia biologie
NUKLEOVÉ KYSELINY (NK)
Úvod do studia biologie
2014 Výukový materiál GE Tvůrce: Mgr. Šárka Vopěnková Projekt: S anglickým jazykem do dalších předmětů Registrační číslo: CZ.1.07/1.1.36/
Základy molekulární genetiky. Bílkoviny Makromolekuly složené z aminokyselin jedna molekula bílkoviny tvořena obvykle stovkami aminokyselin v živých organismech.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Věra Pavlátová. Dostupné z Metodického portálu ISSN: Provozuje Národní.
Autor: Ing. Michal Řehulka  Přírodní makromolekulární látky (Biopolymery)  Vytvářejí dlouhé vláknité molekuly  Nesou a uchovávají genetickou informaci.
Ch_060_Nukleové kyseliny Ch_060_Přírodní látky_Nukleové kyseliny Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková.
EU peníze středním školám Název vzdělávacího materiálu: Nukleové kyseliny II. - RNA, proteosyntéza Číslo vzdělávacího materiálu: ICT10/16 Šablona: III/2.
GENETIKA. CO JE TO GENETIKA? VĚDA O DĚDIČNOSTI CO JE TO GENETIKA? VĚDA O DĚDIČNOSTI A PROMĚNLIVOSTI ŽIVÝCH ORGANISMŮ.
1. 1.Molekulární podstata dědičnosti. Čtyři hlavní skupiny organických molekul v buňkách.
DIGITÁLNÍ UČEBNÍ MATERIÁL
Název školy: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace Autor: Datum tvorby: Mgr. Daniela Čapounová Název: VY_32_INOVACE_06C_19_Proteosyntéza.
Metabolismus bílkovin biosyntéza
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
GENETIKA dědičnost x proměnlivost.
Metabolické děje II. – proteosyntéza
Nukleové kyseliny Charakteristika: biopolymery
Nukleové kyseliny obecný přehled.
NUKLEOVÉ KYSELINY DEFINICE DRUHY SLOŽENÍ FUNKCE REPLIKACE
Sacharidy Lipidy Bílkoviny Nukleové kyseliny Buňka
Od DNA k proteinu - v DNA informace – geny – zápis ve formě 4 písmen = nukleotidů = deoxyribóza, fosfátový zbytek, báze (A, T, C, G) - DNA = dvoušroubovice,
Molekulární základ dědičnosti
Molekulární základy genetiky
Co to je DNA? Advanced Genetics, s.r.o..
NUKLEOVÉ KYSELINY Dusíkaté báze Cukry Fosfát guanin adenin tymin
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Transkript prezentace:

Molekulární genetika DNA a RNA

Nukleové kyseliny nukleové kyseliny jsou nositelkami dědičné informace dochází k přenosu dědičných znaků na potomstvo a k evoluci nejdůležitější jejich schopností je schopnost replikace jejich základními stavebními jednotkami jsou tzv. nukleotidy nukleotidy se skládají z pětiuhlíkatého cukru (pentózy), zbytku kys. fosforečné (H3PO4) a dusíkatých bází Vzniká tak pomocí vazeb polynukleotidové vlákno

DNA - struktura DNA = kyselina deoxyribonukleová -její molekula je tvořena dvěma polynukleotidovými řetězci dusíkaté báze jsou zastoupeny deriváty purinu (Adenin, Guanin) a pyrimidinu (Cytosin, Thymin) mezi N-bázemi protějších vláken dochází k vazebným interakcím = zákon komplementarity spolu se váží vždy jen 2 specifické N-báze (vždy 1 báze pyrimidinová a 1 purinová) a to sice Adenin a Thymin (spojeny 2 vodíkovými můstky) a Cytosinem a Guaninem (3 vodíkové můstky) mezi sousedními bázemi navíc působí van der Waalsovy síly (pomáhají k celkové stabilitě molekuly) obě polynukleotidová vlákna (primární struktura DNA) vytváří (nejčastěji) pravotočivou šroubovici označovanou jako double helix (sekundární struktura DNA)

2 vodíkové můstky

3 vodíkové můstky

Replikace DNA replikace DNA = schopnost zajišťující dědičnost pro rozmnožování je nezbytné, aby potomek dostal plnohodnotnou genetickou informaci při replikaci vzniknou z jedné mateřské molekuly DNA dvě naprosto stejné DNA dceřiné (každá s jedním vláknem z původní DNA) klíčovou roli při replikaci DNA mají enzymy (DNA polymerázy) u člověka se vyskytuje 5 druhů enzymů označované jako DNA polymerázy aby DNA polymeráza mohla zahájit připojování nukleotidů nového vlákna DNA, musí být vodíkové můstky = vazby mezi oběma vlákny nejprve narušeny (využití RNA polymerázy)

Replikace DNA místa, kde tato narušení vzniknou jsou označovány jako replikační počátky u bakterií bychom takovýto počátek našli pouze jeden, zatímco mnohem větší lidská DNA vytváří takovýchto počátků okolo 10 000. To jí umožňuje zreplikovat se také v poměrně krátké době. Poté co jsou k předlohovým (templátovým) vláknům dosyntetizována vlákna nová, je replikace DNA dokončena DNA polymeráza udělá 1 chybu asi na 107 zreplikovaných bází (teoreticky mohou vznikat i dvojice G-T a A-C, jsou ovšem mnohem méně stabilní), navíc má sama korekční funkci. Replikace DNA je semikonzervativní děj, neboť v obou nově vzniklých DNA je jedno vlákno z původní dvoušroubovice

mateřská dvoušroubovice narušení vodíkových můstků a rozpletení mateřské DNA nové doplněné vlákno nové doplněné vlákno mateřská dvoušroubovice DNA

RNA - proteosyntéza = kyselina ribonukleová její molekula je tvořena většinou jen jedním polynukleotidovým vláknem sacharidovou složku tvoří 5C cukr D-ribosa, N-báze tvoří Adenin, Cytosin, Guanin a Uracyl RNA může sama vykonávat i některé enzymatické funkce (štěpení esterové vazby, katalýza polymerace ...). Také díky tomu se usuzuje, že u prvních praorganismů byla nositelkou genetické informace právě RNA Vyskytují se 3 základní typy RNA: mRNA: messenger RNA neboli informační. Přenáší informaci o pořadí aminokyselin z jádra k místu proteosyntézy. tRNA: transferová RNA. Přináší aminokyseliny na proteosyntetický aparát buňky. Funkčně se na nich rozlišuje několik míst, nejdůležitější je antikodon se specifickou trojicí bazí (různým antikodonům odpovídají různé aminokyseliny) a místo kde je samotná aminokyselina navázána. rRNA: ribozomální RNA. Tvoří stavební složku ribozomálních podjednotek.

Transkripce (přepis) = přepis genetické informace z DNA do mRNA (mediátorová RNA) jedná se v drtivé většině o informaci z jednoho genu, sloužící k tvorbě 1 specifické bílkoviny, kterou buňka zrovna potřebuje poté, co je informace přepsána, je díky mRNA přenesena na proteosyntetický aparát, kde se podle opsaného pořadí zahájí proteosyntéza

Translace (překlad) translace je vlastně přenos genetického kódu mRNA do pořadí aminokyselin v polypeptidovém vláknu k proteosyntéze (tj. biosyntéze bílkovin) dochází na ribozómech kromě mRNA vzniklých transkripcí jsou zapotřebí i tRNA z cytoplazmy

Genetický kód po řadě pokusů bylo dokázáno, že genetický kód je tripletový, to znamená, že každá trojice bází kóduje jednu aminokyselinu tyto trojúseky na mRNA se nazývají kodony celkem jsou 4 báze, takže pro kombinaci máme celkem 4x4x4=64 možností důležitý je triplet AUG, neboť jde o triplet iniciační a triplety UAA, UAG a UGA, které jsou označovány jako triplety terminační, neboli beze smyslu

Proteosyntéza proteosyntéza je zahájena iniciační tRNA (transferová RNA) ta se naváže na malou ribozomální podjednotku a začne pomalu projíždět molekulu mRNA jakmile objeví iniciační sekvenci AUG - naváže se a translace začíná na další sekvence (kodony) nasedají další tRNA podle komplementarity bází (systém kodon na mRNA - antikodon na tRNA) mezi přinesenými aminokyselinami vznikají peptidové vazby za tuto část translace - elongaci - je zodpovědná zejména velká ribozomální podjednotka jakmile zbývá již jen kodon beze smyslu (terminační) je proteosyntéza ukončena a vzniklé polypeptidové vlákno může být dále v buňce upravováno na požadovanou bílkovinu

Tabulka genetického kódu