Základy vlnové mechaniky - vlnění

Slides:



Advertisements
Podobné prezentace
Mechanické vlnění Adrian Marek.
Advertisements

Geometrické znázornění kmitů Skládání rovnoběžných kmitů
Téma 3 Metody řešení stěn, metoda sítí.
Vlny ČVUT FEL, Praha Katedra fyziky.
Shrnutí z minula vazebné a nevazebné příspěvky výpočetní problém PBC
RF 5.4. Účinné průřezy tepelných neutronů - Při interakci neutronu s nehybným jádrem může dojít pouze ke snížení energie neutronu. Díky tepelnému pohybu.
5.1 Vlnová funkce 5 Úvod do kvantové mechaniky 5.2 Operátory
Statistická mechanika - Boltzmannův distribuční zákon
Architektura elektronového obalu
Kvantová fyzika hanah.
Konstanty Gravitační konstanta Avogadrova konstanta
Radiální elektrostatické pole Coulombův zákon
Každý z nábojů na povrchu tvoří uzavřenou proudovou smyčku.
Atomová fyzika Podmínky používání prezentace
Vlny a částice Podmínky používání prezentace
OPTICKÁ EMISNÍ SPEKTROSKOPIE
Modely atomů.
Elementární částice Leptony Baryony Bosony Kvarkový model
KEE/SOES 6. přednáška Fotoelektrický jev
Relace neurčitosti Jak pozorujeme makroskopické objekty?
Elektromagnetické spektrum
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Kvantově mechanické představy
VÝVOJ PŘEDSTAV O STAVBĚ ATOMU
10. Přednáška – BOFYZ mechanické vlnění
Elektromagnetické záření látek
Integrovaná střední škola, Hlaváčkovo nám. 673,
Kvantové vlastnosti a popis atomu
Homogenní elektrostatické pole
Fysika mikrosvěta Částice, vlny, atomy. Princip korespondence  Klasická fysika = lim kvantové fysiky h→0  Klasická fysika = lim teorie relativity c→∞
IX. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 23.DUBNA 2008 F4110 Kvantová fyzika atomárních soustav letní semestr
Jak vyučovat kvantové mechanice?
Fyzikální systémy hamiltonovské Celková energie systému je vyjádřená Hamiltonovou funkcí H – hamiltoniánem Energie hamiltonovského systému je funkcí zobecněné.
Jak pozorujeme mikroskopické objekty?
Shrnutí z minula Heisenbergův princip neurčitosti
38. Optika – úvod a geometrická optika I
Elektron v periodickém potenciálovém poli - 1D
Vlny Přenos informace? HRW kap. 17, 18.
Geometrické znázornění kmitů Skládání kmitů 5.2 Vlnění Popis vlnění
INTERFERENCE VLNĚNÍ.
RF Dodatky 1.Účinné průřezy tepelných neutronůÚčinné průřezy tepelných neutronů 2.Besselovy funkceBesselovy funkce Obyčejné Besselovy funkce Modifikované.
Počítačová chemie (9. přednáška)
Relativistický pohyb tělesa
Derivace funkce Derivací funkce f je funkce f ´ která udává sklon (strmost) funkce f v každém jejím bodě Kladná hodnota derivace  rostoucí funkce Záporná.
Fyzika kondenzovaného stavu
Kvantová fyzika: Vlny a částice Atomy Pevné látky Jaderná fyzika.
5.4. Účinné průřezy tepelných neutronů
Základy kvantové mechaniky
Kmitání mechanických soustav 1 stupeň volnosti – vynucené kmitání
Spřažená kyvadla.
IV. KVAZISTACIONÁRNÍ STAVY a RELACE E.t   TUNELOVÁNÍ Z RESONANČNÍCH STAVŮ (-ROZPAD)
VIII. Vibrace víceatomových molekul cvičení
6 Kvantové řešení atomu vodíku a atomů vodíkového typu 6.2 Kvantově-mechanické řešení vodíkového atomu … Interpretace vlnové funkce vodíkového atomu.
VLNOVÉ VLASTNOSTI ČÁSTIC. Foton foton = kvantum elmag. záření vlnové a zároveň částicové vlastnosti mimo představy klasické makroskopické fyziky Louis.
5.4 Časově nezávislá Schrödingerova rovnice 5.5 Vlastnosti stacionární vlnové funkce 5.6 Řešení Schrödingerovy rovnice v jednoduchých případech Fyzika.
5.6 Řešení Schrödingerovy rovnice v jednoduchých případech … Částice v jednorozměrné nekonečně hluboké pravoúhlé potenciální jámě Částice v.
Harmonický oscilátor – pružina pružina x pohybová rovnice počáteční podmínky řešení z počátečních podmínek dostáváme 0.
Přenos informace? HRW2 kap. 16, 17 HRW kap. 17, 18.
Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY DIFERENCIÁLNÍ POČET VE FYZICE.
Částicový charakter světla
Mechanické kmitání, vlnění
Fyzika kondenzovaného stavu
SŠ-COPT Uherský Brod Mgr. Jordánová Marcela 14. Mechanické vlnění
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Kvantová fyzika.
Kmity, vlny, akustika Část I – Kmity, vlny Pavel Kratochvíl
KVANTOVÁ MECHANIKA.
Vlny Přenos informace? HRW2 kap. 16, 17 HRW kap. 17, 18.
Mechanické kmitání, vlnění
Gravitační pole Potenciální energie v gravitačním poli:
Transkript prezentace:

Základy vlnové mechaniky - vlnění Vlna v čase t = 0 Pohybující se vlna, – fázová rychlost - frekvence, - perioda Rovinná vlna, pro druhé derivace této funkce platí: vlnová rovnice - vlnočet

Základy vlnové mechaniky – stojaté vlnění Tj. vlnění struny konečné délky L – konce (s nulovou výchylkou) mají souřadnice x = 0, x = L Fyzikální problém okrajových hodnot – řešení obsahuje parametr, jehož hodnoty jsou voleny tak, aby bylo vyhověno okrajovým podmínkám. Zvolené hodnoty jsou vlastní (charakteristické) hodnoty a odpovídající řešení jsou vlastní (charakteristické) funkce Řešení hledáno jako součin funkcí jednotlivě závislých na x a t - separované proměnné Tj. po dosazení do vlnové rovnice: Obě strany jsou položeny rovny vhodné konstantě Zajistí rovnost stran se separovanými proměnnými Tj.: řešení:

Základy vlnové mechaniky – stojaté vlnění Relace mezi fázovou rychlostí a kruhovou frekvencí (úhlovou rychlostí) ω (rad/s) Řešení je možno vyjádřit ve tvaru reálné sinové nebo kosinové funkce Okrajové podmínky, s kterými je třeba uvažované řešení uvést do souladu Pro u = 0 v x = 0 je nutno vypustit kosinovou funkci x : Pro u = 0 v x = L musí platit : Tato podmínka omezuje dovolené hodnoty ω: Jako funkce času vyhovuje lineární kombinace sin a cos V místě, pro které je je v libovolném čase uzel a v místě, kde je je maximální amplituda, jejíž hodnota osciluje s časem – tj. stojaté vlnění

Základy vlnové mechaniky – stojaté vlnění Platí: což je podmínka pro vlastní hodnotu, funkce un jsou pak vlastními funkcemi Obecné řešení odpovídá principu superpozice

Spektrální rozdělení záření černého tělesa Studium záření absolutně černého tělesa znamenalo definitivní selhání vlnové (nekvantové) teorie světla. Laboratorní černé těleso pohlcující maximum světelného záření je dutina uvnitř tělesa z izolujícího materiálu v jehož jedné stěně je malý otvor. Z otvoru jsou emitovány frekvence odpovídající stojatému vlnění (v pravoúhlém tělese), jež bude v rovnováze z teplotou. Oscilátor, který je v tepelné rovnováze z okolím má průměrnou energii = kT. Dle klasické teorie průměrná energie nikterak nezávisí na frekvenci oscilátoru – všem frekvencím přísluší stejná energie. Počet dovolených vysokých frekvencí stojatého vlnění je mnohonásobně větší oproti frekvencím nízkým – intenzita emitovaného záření (samozřejmě rostoucí s teplotou) by tedy měla spojitě narůstat se zvyšující se detegovanou frekvencí. Experiment však ukázal nárůst pouze do určité hraniční frekvence, která se s růstem nastavené teploty posouvala k vyšším hodnotám – tj. frekvence a energie souvisí – čistě vlnový popis světelného (elektromagnetického) záření je chybný. Spektrální rozdělení záření absolutně černého tělesa experimentálně zjištěné při třech různých teplotách Max Planck – postulát: Frekvence oscilátoru (záření) a jeho energie souvisí dle vztahu Oscilátor může nabývat energie pouze po diskrétních hodnotách - kvantech

Základy kvantové mechaniky – částice a vlny Ve smyslu kvantování energie elektromagnetického záření je tomuto záření přisuzován vedle vlnového také korpuskulární charakter. Obdobně je kvantovou teorií zaveden vlnový charakter elementárním částicím (elektrony apod.), jež byly klasicky chápány korpuskulárně. Vlnový charakter těchto částic vyplynul z experimentálních poznatků o spektrech – stacionární přechody elektronů reprezentují celočíselné energetické změny, což je dokumentováno diskrétními spektrálními čarami. Jevy, u kterých se obecně ve fyzice uplatňují celá čísla jsou jevy související s vibračními mody – dovolenými frekvencemi resp. vlnovými délkami (viz stojaté vlnění). Podmínka stacionárního orbitu o poloměru re: Pro foton platí: tj. – hybnost fotonu Pro vlnovou délku elektronu vychází: tj.

Základy kvantové mechaniky – princip neurčitosti Determinismus klasické mechaniky je založen současném jednoznačném určení hybnosti a polohy (tělesa, bodu). Pro elementární částice mající vlnové vlastnosti je tento princip nemožný Důsledkem ohybu je, že nový směr hybnosti nelze určit přesněji, než v mezích úhlového rozptylu, složka hybnosti může nabývat hodnot z intervalu od tj. Součin neurčitosti souřadnice a hybnosti částice je řádově roven Planckově konstantě h. Přesněji platí: Slavný Heisenbergův princip neurčitosti (1926)

Základy kvantové mechaniky – Schrödingerova rovnice Schrödingerova rovnice reprezentuje přístup označovaný jako vlnová mechanika vedle toho byl formulován přístup Heisenbergův, který je znám jako maticová mechanika. Oba náhledy mají zcela rozdílný matematický formalizmus nicméně „co do kořenů svých základních fyzikálních koncepcí jsou v zásadě ekvivalentní“. Představují dvě formy fundamentální teorie nazývané kvantová mechanika. Schrödingerova rovnice vychází z obecné vlnové rovnice: Substituce: umožňuje obdržet časově nezávislou diferenciální rovnici: Tuto rovnici je nutno upravit pro hmotnou vlnu Celková energie: tj. Pro frekvenci platí: tj. což po dosazení do dif. rovnice a položení , kde je amplituda hmotné vlny vede k Schrödingerově rovnici pro jeden rozměr:

Základy kvantové mechaniky – Schrödingerova rovnice Pro 3 D se rovnice jednoduše rozvede: Operátor energie zahrnující vlnový charakter je Hamiltonovým operátorem – Hamiltoniánem kvantové mechaniky Schrödingerova rovnice je pak psána jednoduše:

Základy kvantové mechaniky – řešení Schrödingerovy rovnice pro případ volné částice Nejjednodušší aplikace – částice je mimo potenciálové pole – potenciální energie v Hamiltoniánu = 0, Schrödingerova rovnice je jednorozměrná Řešení ve tvaru: Resp: Hodnoty mohou být libovolné – kinetická energie E volné částice může nabýt libovolné kladné hodnoty, kvantování energetických hladin nastává u elektronu vázaného potenciálovým polem (k atomu).

Základy kvantové mechaniky – částice v krabici