Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Algebraické výrazy: lomené výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy: počítání s mnohočleny
Konstrukce lichoběžníku 1
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu www. rvp
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ekvivalentní úprava rovnic
Úpravy algebraických výrazů
Rovnost, rozšiřování a krácení.
Střední škola Oselce Škola: SŠ Oselce, Oselce 1, Nepomuk, Projekt: Registrační číslo: CZ.1.07/1.5.00/ Název: Modernizace.
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (2. část)
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Mnohočleny Násobení Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Řešení lineárních rovnic o jedné neznámé
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustava rovnic Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Lineární rovnice – 2. část
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
Řešení lineárních rovnic s neznámou ve jmenovateli
Definiční obory. Množiny řešení. Intervaly.
Orofacionální cvičení I Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice Řešit rovnici znamená určit neznámou. Při řešení rce se snažíme neznámou dostat na jednu stranu a všechno ostatní na stranu druhou.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ROVNICE KOŘENY ROVNICE EKVIVALENTNÍ ÚPRAVY
VY_32_INOVACE_M-Ar 8.,9.07 Lineární rovnice Anotace: Žák si osvojuje řešení lineárních rovnic pomocí ekvivalentních úprav včetně zkoušky. Řeší lineární.
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
(řešení pomocí diskriminantu)
PROVĚRKY Převody jednotek času.
Ryze kvadratická rovnice
Rozklad čísel 6 – 10 – doplňování varianta A
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Jednoduché rovnice, užití druhé ekvivalentní úpravy
Nerovnice Ekvivalentní úpravy.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Řešení lineárních rovnic
Ekvivalentní úpravy rovnic
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Ekvivalentní úpravy rovnic
Rovnice - úvod ÚHLŮ.
Nerovnice Ekvivalentní úpravy - 2..
Nerovnice Ekvivalentní úpravy - 1..
Název školy: Základní škola Pomezí, okres Svitavy Autor: Kotvová Olga
Rovnost versus rovnice
Ekvivalentní úpravy rovnice
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Definiční obory. Množiny řešení. Intervaly.
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnice Ekvivalentní úpravy rovnic

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou) tak, aby po jeho dosazení za proměnnou daná rovnost platila. Existuje-li takové číslo, nazývá se řešení nebo také kořen rovnice. Čemu říkáme rovnice? 6 Pravá strana rovnice P x + 2 Levá strana rovnice L = = = Nyní se tedy naskýtá otázka. Jaké číslo můžeme dosadit do našeho příkladu za proměnnou, aby nastala rovnost? Řešením je tedy číslo. Zdá se to být jednoduché? Kéž by bylo! Nás však čekají daleko složitější rovnice a při jejich řešení nám musí pomoci ekvivalentní úpravy. 6 = 6 Zapíšeme: x = 4 4 4

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. ekvivalentní úprava x – 3 = 5 Jestliže k oběma stranám rovnice přičteme stejné číslo (výraz – jednočlen, mnohočlen), kořen rovnice se nezmění. + 3 x – 3 = 5 x = 8 / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. L = x – 3 = 8 – 3 = 5 P = 5 L = P x – 3 = 5 nebo 8 – 3 = 5 5 = 5

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze ekvivalentní úprava x + 3 = 5 Jestliže od obou stran rovnice odečteme stejné číslo (výraz – jednočlen, mnohočlen), kořen rovnice se nezmění. x + 3 = 5 x = 2 / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. L = x + 3 = = 5 P = 5 L = P x + 3 = 5 nebo = 5 5 = 5

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze ekvivalentní úprava Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. - 3 x + 3 = 5 x = 2 / = x = x / x + 3 = 5 = = L P P L

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: X - 8 = 12 X - 8 = 12 /+ 8 X = X = 20 Zk: L = x – 8 = 20 – 8 = 12 Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. Na obou stranách rovnice provedeme naznačené početní operace. P = 12 L = P

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: 6 = y = y + 5 / = y = y Zk: L = 6 Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. Na obou stranách rovnice provedeme naznačené početní operace P = y + 5 = = 6 L = P y = 1 Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: 5x - 7 = 4x + 3 5x - 7 = 4x + 3 /+ 7 Zk: L = 5x – 7 = 5.10 – 7 = = 50 – 7 = 43 P = 4x + 3 = = = = 43 L = P 5x – = 4x x = 4x + 10 /- 4x 5x – 4x = 4x x x = 10

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A z plus na mínus. Celý předcházející příklad ještě jednou, ale s využitím zkráceného zápisu. 5x - 7 = 4x + 3 5x - 7 = 4x + 3 /+ 7 Zk: L = 5x – 7 = 5.10 – 7 = = 50 – 7 = 43 P = 4x + 3 = = = = 43 L = P 5x = 4x x = 4x + 10 /- 4x 5x – 4x = + 10 x = x- 4x Přejde-li člen z jedné strany rovnice na druhou, změní se jeho znaménko na opačné: Z mínus na plus.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A teď už sami x = x = 1 / + 3 x = x = 4 Zk: L = = 1 P = 1 L = P 0 = 3 + a 0 = 3 + a / = a - 3 = a a = - 3 Zk: L = = 1 P = 1 L = P

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A ještě jeden. - 4u + 8 = 10 – 5u - 4u + 8 = 10 – 5u / + 5u - 4u u = 10 u + 8 = 10 / - 8 u = 10 – 8 u = 2 Zk: = 10 – = 10 – 10 0 = 0 Tolik tedy k prvním třem ekvivalentním úpravám. Příště nás čekají další dvě!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze ekvivalentní úprava Jestliže obě strany rovnice vynásobíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění.. 3 / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. : 3 5. ekvivalentní úprava Jestliže obě strany rovnice vydělíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění. / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedeme naznačené početní operace

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: 8 = -4x 8 = -4x / :(-4) 8 : (-4) = -4x : (-4) -2 = x Zk: L = 8 Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedem e naznačené početní operace. P = -4x = -4.(-2) = 8 L = P x = -2 Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. __ 8 -4x -4 =

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: 4 x x __ __ = 1, Vynásobit musíme všechny členy rovnice!!!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Shrňme si tedy na závěr ještě jednou všechny již známé ekvivalentní úpravy rovnic: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. 4. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). 5. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly).