Časová hodnota peněz ..

Slides:



Advertisements
Podobné prezentace
Výpočet úroku při jednoduchém úrokování
Advertisements

Č í slo a n á zev projektuCZ.1.07/1.5.00/ OP: Vzděl á v á n í pro konkurenceschopnost Zvy š ov á n í vzdělanosti pomoc í e-prostoru N á zev a adresa.
Základy financí hodina.
1. cvičení úrokování.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Zdeněk Binar Obchodní akademie a Střední odborná škola logistická, Opava, příspěvková.
Ú R O K O V Á N Í.
Složené úrokování.
Finanční matematika.
STŘÁDÁNÍ Užití GP v praxi 1.
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Rozvoj vzdělanosti Číslo šablony:
Název školy: Střední průmyslová škola, Ostrava - Vítkovice,
Úročení.
Číslo a název projektuCZ.1.07/1.5.00/ OP: Vzdělávání pro konkurenceschopnost Zvyšování vzdělanosti pomocí e-prostoru Název a adresa školySoukromá.
VY_62_INOVACE_A1 – 28 Složené úrokování © Petr Špína 2012.
Tento materiál byl vytvořen jako učební dokument projektu inovace výuky v rámci OP Vzdělávání pro konkurenceschopnost VY_62_INOVACE_A1 – 30.
DIGITÁLNÍ UČEBNÍ MATERIÁL
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o. EU PENÍZE ŠKOLÁM CZ.1.07/1.5.00/ VY_62_INOVACE_01_01 Zpracoval(a):RNDr. Lucie Cabicarová.
Číslo projektu CZ.1.07/1.500/ Číslo materiálu VY_62_INOVACE_01_FINANCE Název školy Táborské soukromé gymnázium, s. r. o. Tábor Autor Mgr. Zdeněk.
SLOŽENÉ ÚROKOVÁNÍ Na konci úrokovacího období se připíše úrok za uplynulé období a v příštím úrokovacím období se počítá úrok nejen z původní jistiny,
Výukový materiál zpracován v rámci oblasti podpory 1.5 „EU peníze středním školám“ Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název.
Číslo projektu CZ.1.07/1.500/ Číslo materiálu VY_62_INOVACE_01_FINANCE Název školy Táborské soukromé gymnázium, s. r. o. Tábor Autor Mgr. Zdeněk.
Věra Machová Gymnázium Uherské Hradiště
Časová hodnota peněz ..
Tento Digitální učební materiál vznikl díky finanční podpoře EU- Operačního programu Vzdělávání pro konkurenceschopnost Není –li uvedeno.
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Úrokovací období.
Výukový materiál zpracován v rámci projektu EU peníze školám
Finanční matematika v osobních a rodinných financích
Jana Leciánová Gymnázium Uherské Hradiště, 2013
Základy finanční matematiky
ZÁKLADY FINANČNÍ MATEMATIKY
Jednoduché úrokování.
ÚROKOVÁNÍ. Rozlišujeme dva druhy úrokování Jednoduché úrokování  užití AP v praxi  použití výjimečné  např. cenné papíry, směnky Složené úrokování.
VY_62_INOVACE_01_FINANCE Táborské soukromé gymnázium, s. r. o. Tábor
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Prezentace příkladu 6.3 FIPV1 Jana Marcelová.
Číslo projektu CZ.1.07/1.500/ Číslo materiálu VY_62_INOVACE_19_FINANCE Název školy Táborské soukromé gymnázium, s. r. o. Tábor Autor Mgr. Zdeněk.
Věra Machová Gymnázium Uherské Hradiště
Finanční gramotnost Jana Leciánová Gymnázium Uherské Hradiště, 2013 Jednoduché úrokování.
Číslo projektu CZ.1.07/1.5.00/ Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Peníze,
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky 1.
Finanční matematika Ú R O K O V Á N Í.
Název školy : Základní škola a mateřská škola, Svoboda nad Úpou, okres Trutnov Autor : Mgr. Irena Nešněrová Datum :listopad 2012 Název :VY_42_INOVACE_4.2.1.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_22_01 Název materiáluFinanční.
Finanční gramotnost: Počítání s procenty. PROCENTA A ÚROK 01 Počítání s procenty 2 Existují 2 skupiny lidí. Ti, kteří úroky platí, a ti, kteří je inkasují.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_11_07 Název materiáluJednoduché.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_22_13 Název materiáluJednoduché.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_22_14 Název materiáluSložené.
Název školy Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice Číslo projektu CZ.1.07/1.5.00/ Název materiálu.
Úrok Početní příklady. Osnova výkladu 1.Jednoduchý úrok 2.Složený úrok.
Kód vzdělávacího materiálu: VY_62_INOVACE_0209 Název vzdělávacího materiálu: Úročení vkladů a úvěrů Datum vytvoření: Jméno autora: Ing. Zdenek.
Jednoduché úročení Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí.
Výpočet úroků. Jednoduché úrokování ú = j * i * t ú = úrok j = jistina (kapitál, dlužná hodnota) i = p/100 t = čas – dny/360.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/
ZŠ Týnec nad Labem AUTOR: Martina Dostálová
(finanční gramotnost)
Ceny PRODUKTŮ NA FINANČNÍM TRHU
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Ekonomika malých a středních podniků
Úročení.
Finanční matematika 3. (finanční gramotnost) Jednoduché úrokování
Úroky - samostatná práce
Název školy : Základní škola a mateřská škola,
Složené úročení Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí.
ŠKOLA: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Finanční matematika Ú R O K O V Á N Í.
Transkript prezentace:

Časová hodnota peněz .

Jednoduché úročení Použité symboly: I = celková částka úroku p = roční úroková míra (p.a.)v % i = roční úroková míra v koeficientu (p/100) Ko =kapitál na počátku úročení (jistina) n = počet let výpůjčky

Jednoduché úročení Výpočet úroku: (ze stále stejné jistiny) - za jedno období: I = Ko x i = Ko x p/100 za n období: I = Ko x i x n

Základní úlohy jednoduchého úročení Výpočet úroku (I) výpočet počáteční jistiny (Ko) výpočet úrokové míry (i,p) výpočet počtu let úročení

Výpočet úroku Na účet vložena počáteční jistina (Ko ) ve výši 5000,- při úrokové míře 4% p.a. O kolik se počáteční jistina zvýší za 3 roky? I = Ko . p/100 x n I = 5000 x 0,04 x 3 = 600,-

Výpočet počáteční jistiny Jak velká počáteční jistina vzroste o úrok ve výši 600,- při 4 % úrokové míře p.a. za tři roky ? I x 100 I = Ko . p/100 x n → Ko = ----------- (Ko . i . n ) p . n 600 x 100 Ko = --------------- = 5000 4 x 3

Výpočet úrokové míry Při jaké úrokové míře p.a. je dosaženo z počáteční jistiny Ko 5000,- za 4 roky úroku 600,- I x 100 I = Ko . p/100 x n → p = ----------- (Ko . i . N ) K . n 600 . 100 p = ------------------ = 4 (%) 5000 . 3

Výpočet doby úročení Za jak dlouho (kolik období) jistina 5000,- přinese při úrokové sazbě 4 % p.a. úrok ve výši 600,- ? I x 100 I = Ko . p/100 x n → n = ----------- (Ko . i . n ) K . p 600 x 100 n = -------------- = 3 (%) 5000 x 4

Složené úročení vychází z jednoduchého úročení, předpokládá „úročení úroků“ 1. rok I1 = Ko . p/100 ( I = Ko x i ) K1 = Ko + I1 → K1 = Ko + Ko .p/100 → K1 = Ko (1 + .p/100 ) úročitel

Složené úročení 2. rok I1 = K1 . p/100 ( I = K1 x i) K2 = K1 + I1 K2 = K1 + K1 . p/100 K2 = K1 (1 + p/100 ) K1 = Ko (1 + .p/100 ) K2 = Ko (1 + .p/100 ) . (1 + p/100 ) tj. K2 = Ko (1 + .p/100 )2 poč.jistina úročitel (1+i)n

Složené úročení Základní úloha - výpočet jistiny za stanovený počet období n, tj. na konci n-tého období: Kn = K0 . (1 + p/100) n nebo také Kn = K0 . (1 + i ) n

Složené úročení Odvozená úloha – výpočet počáteční jistiny při známé konečné jistině, známém počtu let úročení n při dané úrokové míře: Východiskem je Kn = K0 . (1 + i ) n Kn kde K0 = -------------- (1 + i ) n

Složené úročení Odvozená úloha je i výpočet úrokové sazby p (resp. i) a výpočet doby, po kterou je jistina úročena n výpočet úroku za celou dobu úročení - výpočet složitější

Příklady Jak velká bude jistina na konci 5 roku úročení ve výši 2000,- při úrokové sazbě 5 % p.a. ?

Příklady Jak velká počáteční jistina musí být uložena, aby za 4 roky bylo dosaženo při 5 % p.a. úrokové míře jistiny 60 000,-