Přímá (i nepřímá) výroba elektrické energie Energie Slunce Přímá (i nepřímá) výroba elektrické energie
Možnosti využití sluneční energie Jak lze vyrobit elektrickou energii ze Slunce ? a) přímo * fotovoltaické články b) nepřímo * ohřev média a následná výroba elektrické energie Jak lze vyrobit tepelnou energii ze Slunce ? * solární kolektory Míra využití sluneční energie je dána: * intenzitou slunečního svitu * technologickými možnostmi * všestranným využitím získané energie * ekonomickou návratností * možností investic a mírou zisku
Mapa slunečního svitu v ČR V ČR za rok 1kWP 1MWh Solární záření v České republice Zdroj: Atlas podnebí Česka Světová mapa slunečního svitu – matematický model
Mapa slunečního svitu v Evropě
Výroba OZE v ČR - zdroj: Český regulační úřad
Výkon fotovoltaických elektráren v ČR Zdroj: ERU - počet: 21 925 - výkon: 2 072MW
Největší fotovoltaické elektrárny v ČR zdroj: ERU lokalita výkon (MW) spuštění výroba 2011 (GWh) provozovatel FVE Ralsko 38,5 2010 40 ČEZ – Obnovitelné zdroje FVE Vepřek 35,1 40,4 FVE CZECH NOVUM s.r.o. FVE Ševětín 29,9 32,5 FVE Brno letiště 21,2 2009, 2010 18 BS Park s.r.o. FVE Mimoň 17,5 17,6
Nepřímá výroba elektrické energie * V ohnisku (pec) je teplota až 3000oC * Voda se mění v páru a pohání turbínu (na obr. je varianta s olejem, nutný výměník * Zrcadla (heliostaty) jsou pohyblivá a natáčí se za sluncem
Nepřímá výroba elektrické energie * Je tvořena řadami naklápěcích slunečních kolektorů, sluneční záření je směřováno na trubku * V trubce proudí teplonosné médium * V Kalifornii pracuje elektrárna s výkonem 30 MW
Nepřímá výroba elektrické energie
Princip fotovoltaického článku * po dopadu fotonu (musí mít dostatečnou energii) na polovodič typu N se uvolní z mřížky elektron, po kterém zůstane kladná "díra" * volný elektron nemůže vlivem přechodu PN přejít do vrstvy P * elektrony uvolněné ve vrstvě P mohou volně přecházet do vrstvy N * tím se vytvoří rozdíl potenciálů mezi spodní a vrchní vrstvou na článku naměříme napětí asi 0,5 V * po připojení zátěže začne procházet proud * z 1m2 lze získat stejnosměrný výkon přibližně 150W * pro praktické využití je třeba sério-paralelní zapojení článků
Princip fotovoltaického článku
Materiály pro fotovoltaické články 1. Generace - základem jsou krystalické křemíkové desky Křemík teoretická maximální účinnost 31 % multikrystalický * účinnost (11-14) % * výhody nižší cena difúzní světlo * energetická návratnost 2,2 let monokrystalický * reálná účinnost (12-16) % * energetická návratnost 2,7 let Obě technologie jsou dnes zcela rovnocenné. V současné době nejvíce využívaná technologie (zhruba 90%)
2. Generace Hlavním aspektem je úspora křemíku při plánovaném růstu výroby článků Tenkovrstvé technologie Aktivní polovodičová vrstva se nanáší na podložku (sklo nebo plast) a je 100 – 1000 tenčí. a) na bázi křemíku * polykrystalická technologie, účinnost (okolo 10%) * amorfní křemík nanesený na skle, tloušťka 0,5m, účinnost (6 - 7)% * moduly HIT – dvě vrstvy amorfního křemíku mezi kterými je b) bez křemíku * CIS moduly – měď, indium, galium, selen, účinnost (11 - 12)% * Cd-Te ( kadmium-telurid) moduly, účinnost (9 - 11)% Obecné vlastnosti tenkovrstvé technologie: * lehkost a snadná manipulace * citlivost na denní světlo i při nepřímém slunečním svitu * menší citlivost na vysoké teploty * nižší výrobní náklady a rychlejší zhodnocení investice * předpoklad zvyšování účinnosti Použití - fólie na ohebný podklad, fasády domů, vrstvy na skle, …
Vlastnosti – současná účinnost 1,3%, cílová hodnota okolo 5% Tenkovrstvé technologie Jedna z možných realizací technologie – solární články na fólii a papíře. 1. nastříkání fotocitlivých vrstev ve vakuové komoře na fólii (papír) - USA 2. tisk pomocí speciálních barev na list běžný papíru (technologie 3PV) - Německo Vlastnosti – současná účinnost 1,3%, cílová hodnota okolo 5% Výhoda – běžný tisk nízká cena
Další generace a perspektivy vývoje solárních panelů Vícevrstvé solární články (dvoj-, trojvrstvé články) * ultratenké materiály s různou citlivostí na sluneční spektrum * některé fotony „uvíznou“ ve vrchní vrstvě, jiné projdou hlouběji * teoretická účinnost je až 72 % * problémy s krystalickou mřížkou, maximální dosažená účinnost okolo 30 % * jednotlivé vrstvy by měly být zdrojem stejného proudu * výsledné napětí je dáno součtem jednotlivých napětí vrstev. V současné době existuje několik dalších technologií, které mají za úkol zvýšit účinnost, zvýšit výkon. Většina nových technologií je ve stádiu vývoje. Stávajícím problémem je i vysoká cena a nízká účinnost
Vícevrstvé solární články (trojvrstvé články)
Vývoj účinnosti
Nové články - perovskit * Jedná se o skupiny látek, sloučenin halogenů (chlór, jód nebo bróm), které jsou naneseny na základní vodivé desce (sklo) * na podzim 2013 se podařilo dosáhnout účinnosti okolo 15% v laboratorních podmínkách * do budoucna se předpokládá i stejná účinnost v normálních podmínkách * mohou být i průhledné * cena nových článků by měla být výrazně nižší než u stávajících křemíkových modulů * uvažuje se i "tisku" perovskitu na současné křemíkové články, což by vedlo ke zvýšení účinnosti
Popište jednotlivé solární články (momokrystalický a polykrystalický křemík, organický solární článek.)
Perspektivy vývoje solárních panelů a ceny Hlavní perspektivy vývoje: * snižování tloušťky destiček na (150-200) m snižování spotřeby materiálu a potřebné energie na výrobu * výrazný pokles ceny křemíku, za 5 let na 10% původní částky * pokles ceny modulů na 1,5 euro/WP.
Materiály Data Český regulační úřad Světová mapa slunečního svitu Internetový odkaz Mapa svitu v ČR Atlas Česka Wikipedie Otevřená encyklopedie Simulace http://www.leifiphysik.de Petr Mastný Obnovitelné zdroje energie Petr Novotný Fotovoltaika, prezentace TU Liberec