II. Řešení úloh v testech Scio z matematiky

Slides:



Advertisements
Podobné prezentace
IV. Řešení úloh v testech Scio z obecných studijních předpokladů
Advertisements

VI. Řešení úloh v testech Scio z českého jazyka
Přijímací zkoušky na SŠ MATEMATIKA Připravil PhDr. Ivo Horáček, PhD.
IX. Řešení úloh v testech Scio z obecných studijních předpokladů
VI. Řešení úloh v testech Scio z matematiky
Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2011/2012 pro 6. ročník (18. – 24. úloha) VIII. označení digitálního učebního materiálu:
Pythagorova věta a její odvození
I. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 6. ročník (19. – 26. úloha) III. označení digitálního.
VI. Řešení úloh v testech Scio z obecných studijních předpokladů
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 9. ročník (27. – 39. úloha) VIII. označení digitálního.
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (16. – 25. úloha) VIII. označení digitálního.
VII. Řešení úloh v testech Scio z matematiky
VI. Řešení úloh v testech Scio z obecných studijních předpokladů
Kdo chce být milionářem ?
VI. Řešení úloh v testech Scio z matematiky
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – procenta pro chytré hlavy VY_42_INOVACE_18 Sada 4 Základní škola T.
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
IV. Řešení úloh v testech Scio z matematiky
I. Řešení úloh v testech Scio z matematiky
Vzdělávací materiál v rámci projektu EU peníze školám Školní rok: 2011/2012 Ročník: Předmět: Téma: Anotace: Autor : Vzdělávací materiál je určen pro bezplatné.
X. Řešení úloh v testech Scio z obecných studijních předpokladů
X. Řešení úloh v testech Scio z matematiky
V. Řešení úloh v testech Scio z matematiky
Výukový materiál zpracován v rámci projektu EU peníze školám
II. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (26. – 34. úloha) IX. označení digitálního.
V. Řešení úloh v testech Scio z matematiky
Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 9. ročník (36. – 44. úloha) IV. označení digitálního.
Řešení úloh v testech Scio z českého jazyka zadaných ve školním roce 2011/2012 pro 9. ročník (45. – 55. úloha) X. označení digitálního učebního materiálu:
MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/ Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám.
Matematika a její aplikace
Vzdělávací obor: Matematika
III. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 6. ročník (19. – 24. úloha) IX. označení digitálního učebního materiálu:
Matematika a její aplikace
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání.
I. Řešení úloh v testech Scio z obecných studijních předpokladů
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – procenta, změna základu 3 VY_42_INOVACE_17 Sada 4 Základní škola T.
V. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (35. – 45. úloha) X. označení digitálního.
Matematika a její aplikace
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2011/2012 pro 6. ročník (34. – 40. úloha) X. označení digitálního učebního materiálu:
IX. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školní roce 2012/2013 pro 6. ročník ( úloha) I. označení digitálního učebního.
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – procenta 1 VY_42_INOVACE_12 Sada 4 Základní škola T. G. Masaryka, Český.
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 9. ročník (23. – 35. úloha) III. označení digitálního.
I. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2012/2013 pro 6. ročník (34. – 40. úloha) V. označení digitálního učebního materiálu:
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_763.
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 6. ročník (7. – 12. úloha) VII. označení digitálního učebního materiálu:
Matematika a její aplikace Racionální čísla, početní operace v oboru racionálních čísel Dělení desetinným číslem VY_42_INOVACE_10 Sada 3 Základní škola.
Matematika a její aplikace
Matematika a její aplikace
Násobilka 2, 3, 4, 5 VY_32_INOVACE_085, 5. sada, M ANOTACE
Projekt Moderní škola, registrační číslo projektu CZ.1.07/1.4.00/ Příjemce: Základní škola Velké Přílepy, okr. Praha-západ, Pražská 38, Velké.
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – přímá úměrnost 2 VY_42_INOVACE_10 Sada 4 Základní škola T. G. Masaryka,
VI. Řešení úloh v testech Scio z českého jazyka
Matematika a její aplikace
Matematika a její aplikace Krácení zlomků VY_42_INOVACE_13 Sada 3 Racionální čísla, početní operace v oboru racionálních čísel Základní škola T. G. Masaryka,
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 9. ročník (25. – 30. úloha) X. označení digitálního učebního materiálu:
Matematika a její aplikace Racionální čísla, početní operace v oboru racionálních čísel Desetinná čísla a jejich znázorňování VY_42_INOVACE_01 Sada 3 Základní.
II. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z matematiky zadaných ve školní roce 2012/2013 pro 9. ročník (19. – 24. úloha) IV. označení digitálního učebního materiálu:
Řešení úloh v testech Scio z českého jazyka zadaných ve školním roce 2012/2013 pro 9. ročník (12. – 18. úloha) II. označení digitálního učebního materiálu:
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník (13. – 18. úloha) III. označení digitálního učebního materiálu:
Čtverec kružítkem Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Název školy: Základní škola a Mateřská škola Sepekov Autor: Mgr. Irena Kotalíková Název: VY_32_INOVACE_180 _Dělitel a násobek Vzdělávací oblast: Matematika.
Transkript prezentace:

II. Řešení úloh v testech Scio z matematiky Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/21.1977 Řešení úloh v testech Scio z matematiky zadaných ve školní roce 2012/2013 pro 9. ročník (7. – 12. úloha) II. označení digitálního učebního materiálu: VY_32_INOVACE_MA.9.032

Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 9. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky – zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

7. – 9. úloha testu Scio z matematiky pro 9. ročník (podzim 2012) Pan Novák byl celý měsíc doma se 60 % platu, protože ve firmě byl nedostatek práce. Jeho hrubá měsíční mzda činila 18 000 Kč. Jaká by tato mzda byla, kdyby celý měsíc pracoval? 8. Na uvedeném obrázku je pravidelný šestiúhelník ABCDEF a druhý pravidelný šestiúhelník A´B´C´D´E´F´, přičemž jeho vrcholy jsou středy úseček AS, BS, CS, DS, ES a FS. V jakém poměru jsou obvody malého a velkého šestiúhelníku? 9. Který z následujících čtverců patří na první místo uvedené obrázkové řady?

7. otázka testu Scio z matematiky pro 9. ročník (podzim 2012) Pan Novák byl celý měsíc doma se 60 % platu, protože ve firmě byl nedostatek práce. Jeho hrubá měsíční mzda činila 18 000 Kč. Jaká by tato mzda byla, kdyby celý měsíc pracoval? Nabízená řešení jsou: A) 33 000 Kč; B) 30 000 Kč; C) 27 000 Kč; D) 21 000 Kč. Řešení: Jedná se o výpočet základu. 60% je 18 000 Kč 1% je 18 000 : 60 = 300 Kč 100% = 300 . 100 = 30 000 Kč Správnou odpovědí je varianta B).

8. otázka testu Scio pro 9. ročník z matematiky (podzim 2012) Na uvedeném obrázku je pravidelný šestiúhelník ABCDEF a druhý pravidelný šestiúhelník A´B´C´D´E´F´, přičemž jeho vrcholy jsou středy úseček AS, BS, CS, DS, ES a FS. V jakém poměru jsou obvody malého a velkého šestiúhelníku? Nabízená řešení jsou: A) 1 : 2; B) 1 : 3; C) 1 : 4; D) 1 : 6. Řešení: Velký pravidelný šestiúhelník ABCDEF je složený ze šesti shodných trojúhelníků. Strany malého pravidelného šestiúhelníku v těchto trojúhelnících jsou střední příčky. Proto např. v trojúhelníku ABS je střední příčkou úsečka A´B´, pro kterou platí, že její délka je rovna polovině délky úsečky AB. Jestliže obvod většího šestiúhelníku vypočteme tak, že sečteme délky základen rovnoramenných trojúhelníků, pak obvod menšího šestiúhelníku vypočteme tak, že sečteme délky středních příček rovnoramenných trojúhelníků. Obvody budou ve stejném poměru jako délka strany a délka její střední příčky, tedy 1 : 2. Správnou odpovědí je varianta A).

9. otázka testu Scio z matematiky pro 9. ročník (podzim 2012) Který z následujících čtverců patří na první místo uvedené obrázkové řady? Nabízená řešení jsou: A) A; B) B; C) C; D) D. Řešení: V obrázkové řadě se červený čtvereček v předcházejícím obrázku rozpadne na čtverec zobrazený na 2. místě v obrázkové řadě při zachování původní velikosti, tzn. osm čtverečků po obvodu je červených a čtvereček uprostřed je bílý.. V obrázkové řadě se bílý čtvereček v předcházejícím obrázku rozpadne na devět bílých čtverečků, které zachovávají velikost původního čtverečku. Z toho vyplývá, že obrázek na 2. místě může při dodržení výše uvedeného vzniknout pouze ze čtverečku v nabídce D). Správnou odpovědí je varianta D).

10. – 12. úloha testu Scio z matematiky pro 9. ročník (podzim 2012) Které z následujících tvrzení o neznámé x v uvedené rovnici je pravdivé? A) x je celé číslo; B) x je záporné číslo; C) x je menší než 1; D) x je desetinné číslo s nekonečným desetinným rozvojem 11. Je dána čtveřice čísel 35, 49, 71, 84. Které z těchto čísel musíme z uvedené skupiny vynechat, aby zbylá tři čísla byla soudělná? 12. Která z pozic na uvedené číselné ose znázorňuje zlomek ?

10. otázka testu Scio z matematiky pro 9. ročník (podzim 2012) Které z následujících tvrzení o neznámé x v uvedené rovnici je pravdivé? Nabízená řešení jsou: A) x je celé číslo; B) x je záporné číslo; C) x je větší než 1; D) x je desetinné číslo s nekonečným desetinným rozvojem. Řešení: Daný zlomek je třeba řešit postupně: po výpočtu A, B a C dostáváme 1 + , jehož hodnota převedena na desetinné číslo je 1,25. Správnou odpovědí je varianta C). = 10−4 4 = 6 4 = 3 2 A = 3 2 1 4 𝐴 2 = 3.1 2.2 = 3 4 B = = 2 1 3 4 D = 3.1 4.3 = 3 12 = 1 4 C = = 2 1 3 1

11. otázka testu Scio z matematiky pro 9. ročník (podzim 2012) Je dána čtveřice čísel 35, 49, 71, 84. Které z těchto čísel musíme z uvedené skupiny vynechat, aby zbylá tři čísla byla soudělná? Nabízená řešení jsou: A) 35; B) 49; C) 71; D) 84. Řešení: Soudělná čísla jsou čísla, která mají více než jednoho společného dělitele, tzn. kromě čísla 1 jsou dělitelná i jiným nebo jinými čísly. 35 je dělitelné 1, 3, 5, 7 49 je dělitelné 1, 7 71 je prvočíslo 84 je dělitelné 1, 2, 3, 4, 6, 7, 12 Když vyřadíme číslo 71, budou společnými děliteli čísla 1 a 7. Správnou odpovědí je varianta C).

12. otázka test Scio z matematiky pro 9. ročník (podzim 2012) Která z pozic na uvedené číselné ose znázorňuje zlomek ? Nabízená řešení jsou: A) A; B) B; C) C; D) D. Řešení: Pozice A znázorňuje na číselné ose číslo 1 Pozice B znázorňuje na číselné ose číslo 1 Pozice C znázorňuje na číselné ose číslo 1 Pozice D znázorňuje na číselné ose číslo 3 Správnou odpovědí je varianta B). 4 6 = 𝟐 𝟑 2 6 = 8 6 = 𝟒 𝟑 4 6 = 10 6 = 𝟓 𝟑 2 6 = 20 6 = 𝟏𝟎 𝟑