Fyzika 7. ročník Zákon setrvačnosti Anotace

Slides:



Advertisements
Podobné prezentace
Smykové tření a valivý odpor
Advertisements

Síla značka síly F jednotkou síly je 1N (newton), popř. kN ( = 1000 N)
7. ročník Tření, třecí síla Tření, třecí síla.
Přeměny energií Při volném pádu se gravitační potenciální energie mění na kinetickou energii tělesa. Při všech mechanických dějích se mění kinetická energie.
Mgr. Ladislav Dvořák PdF MU, Brno
Síla 1kg = 10N nebo 100g = 1N značka síly F
7. Mechanika tuhého tělesa
Fyzika 7. ročník Síla Anotace
Zpracoval: Ondřej Kubica, 8.A ZŠ a MŠ, Horníkova 1
Zákon setrvačnosti (první newtonův pohybový zákon)
Dynamika hmotného bodu
Newtonovy pohybové zákony
NEINERCIÁLNÍ VZTAŽNÁ SOUSTAVA
Síla jako FV Skládání sil - opakování (FV) - opakování (síly)
Pohybové účinky síly. Pohybové zákony
INERCIÁLNÍ A NEINERCIÁLNÍ VZTAŽNÉ SOUSTAVY
Fyzika 9. ročník Anotace Prezentace, která se zabývá Ohmovým zákonem
Zákon setrvačnosti Autor: Lukáš Polák Pokračovat.
NEWTONOVY POHYBOVÉ ZÁKONY.
Fyzika 7. ročník Otáčivé účinky síly Anotace
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Soňa Brunnová Název materiálu: VY_32_INOVACE_08_ZVLASTNI.
Tření Třecí síla. (Učebnice strana 91 – 95)
Fyzika 9. ročník Anotace Prezentace, která se zabývá seznámením s elektrotechnickými značkami Autor Ing. Zdeněk Fišer Jazyk Čeština Očekávaný výstup Žáci.
Druhy pohybu – posuvný, otáčivý
Dynamika.
Třecí síly Třecí síly působí při libovolném pohybu dvou dotýkajících se těles. Zejména je můžeme pozorovat při libovolném druhu pohybu po povrchu země.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Soňa Brunnová Název materiálu: VY_32_INOVACE_07_NEWTONOVY.
Vzájemné působení těles
Fyzika 7.ročník ZŠ Newtonovy pohybové zákony Creation IP&RK.
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony
Anotace Prezentace, která se zabývá Newtonovými zákony. Autor Mgr. Michal Gruber Jazyk Čeština Očekávaný výstup Žáci znájí a umí využívat Newtonovy zákony.
Zákon vzájemného působení dvou těles
Anotace Prezentace, která se zabývá Newtonovými zákony. Autor Mgr. Michal Gruber Jazyk Čeština Očekávaný výstup Žáci znají a umí využívat Newtonovy zákony.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona:III/2Č.materiáluVY_32_INOVACE_450.
Digitální učební materiál
Výukový materiál zpracován v rámci projektu EU peníze školám
IDENTIFIKÁTOR MATERIÁLU: EU
Fyzika 7. ročník Pohyb tělesa Anotace
Tíhová síla a tíha tělesa
Výukový materiál zpracován v rámci projektu EU peníze školám
4.Dynamika.
DYNAMIKA HMOTNÉHO BODU NEINERCIÁLNÍ VZTAŽNÉ SOUSTAVY Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento projekt je spolufinancován.
Druhy pohybu – rovnoměrný, nerovnoměrný
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Zákon vzájemného působení dvou těles
Síla.
my.cz Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/ Autor Ing. Luboš Bělohrad Název šablony.
Hra k zopakování či procvičení učiva nebo test k ověření znalostí
Číslo projektu: CZ.1.07/1.4.00/ Číslo smlouvy: 4250/21/7.1.4/2011 Číslo klíčové aktivity: EU OPVK 1.4 III/2 Název klíčové aktivity: Inovace a zkvalitnění.
Druhy pohybu – přímočarý, křivočarý
Skládání sil opačného směru
Číslo projektu: CZ.1.07/1.4.00/ Číslo smlouvy: 4250/21/7.1.4/2011 Číslo klíčové aktivity: EU OPVK 1.4 III/2 Název klíčové aktivity: Inovace a zkvalitnění.
Anotace Prezentace, která se zabývá skládáním sil různého směru a rovnováhou sil. Autor Mgr. Michal Gruber Jazyk Čeština Očekávaný výstup Žáci umí graficky.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_713.
Rovnováha dvou sil (Učebnice strana 43 – 45)
DYNAMIKA Newtonovy zákony: První Newtonův zákon: (zákon setrvačnosti)
NEWTONOVY POHYBOVÉ ZÁKONY I.
Síla 1kg = 10N nebo 100g = 1N značka síly F
1. Newtonův pohybový zákon - Zákon setrvačnosti Newtonovy pohybové zákony 2. Newtonův pohybový zákon - Zákon síly 3. Newtonův pohybový zákon - Zákon akce.
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr. Zdeňka Horská Název materiálu: VY_32_INOVACE_2_19_ Newtonovy pohybové zákony I Číslo projektu:
Název školy: Základní škola a Mateřská škola při dětské léčebně, Janské Lázně, Horní promenáda 268 Autor: Mgr. Svatava Juhászová Datum: Název:
INERCIÁLNÍ A NEINERCIÁLNÍ VZTAŽNÁ SOUSTAVA Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radim Frič. Slezské gymnázium, Opava, příspěvková.
NÁZEV ŠKOLY: Speciální základní škola, Chlumec nad Cidlinou, Smetanova 123 AUTOR: Mgr. Hana Dvořáčková NÁZEV: VY_32_INOVACE_55_SETRVAČNOST TEMA: FYZIKA.
Škola ZŠ Masarykova, Masarykova 291, Valašské Meziříčí Autor
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov
AUTOR: Mgr. Hana Dvořáčková NÁZEV: VY_32_INOVACE_55_SETRVAČNOST
VY_32_INOVACE_
1. Newtonův pohybový zákon – Zákon síly
NÁZEV ŠKOLY: Základní škola a Mateřská škola Nedvědice, okres Brno – venkov, příspěvková organizace AUTOR: Jiří Toman NÁZEV: VY_32_INOVACE_06_20 Síly.
Název školy Základní škola Jičín, Husova 170 Číslo projektu
Transkript prezentace:

Fyzika 7. ročník Zákon setrvačnosti Anotace Prezentace, která se zabývá zákonem setrvačnosti Autor Ing. Zdeněk Fišer Jazyk Čeština Očekávaný výstup Žáci popíší zákon setrvačnosti SVP Ne Klíčová slova Fyzika, pohyb, setrvačnost Druh učebního materiálu Prezentace Druh interaktivity Kombinace Cílová skupina Žák Stupeň a typ vzdělávání Základní vzdělávání – 2. stupeň Typická věková skupina 12-15 let Celková velikost 298 kB

Newtonovy pohybové zákony Fyzika 7. ročník Newtonovy pohybové zákony 1. Newtonův pohybový zákon - Zákon setrvačnosti

Definice zákona Setrvačnost těles Příklady 1. Newtonův pohybový zákon - Zákon setrvačnosti Definice zákona Setrvačnost těles Příklady

Nahlédněme nejprve na tři ukázky a zkusme prozkoumat, jak na sebe tělesa působí silami a jaké poznatky z toho vyplynou… Pohyb kuličky je ovlivněn pružinovými válci PV a odraznými hranoly OH, které na ni působí silou. Tím dochází ke změně velikosti a směru rychlosti kuličky a tak se její pohybový stav neustále mění. Pokud by k silovému působení na kuličku nedocházelo, kulička by zůstala v klidu. Na vodorovné podložce je v klidu válec. Koule, která se pohybuje rovnoměrným pohybem, do něj narazí a působí na něj silou. Tím mění pohybový stav válce. Současně působí i válec na kouli a mění její pohybový stav tím, že zmenšuje velikost její rychlosti. Dvě ocelové kuličky jsou umístěny na vodorovné podložce a nachází se v klidu. Pokud mezi ně umístíme silný tyčový magnet, pak se kuličky uvedou do zrychleného pohybu, protože magnet na ně působí přitažlivou magnetickou silou.

tělesa na sebe působí silami. silové působení je vždy vzájemné. Můžeme tedy konstatovat, že tělesa na sebe působí silami. silové působení je vždy vzájemné. působením sil mohou tělesa měnit velikost a směr své rychlosti, tedy svůj pohybový stav. 1. Newtonův zákon vysvětluje a také zdůvodňuje, proč se těleso nachází v určitém pohybovém stavu a za jakých podmínek můžeme jeho pohybový stav změnit. Znění zákona: Těleso setrvává v klidu nebo v rovnoměrném přímočarém pohybu, dokud není přinuceno tento stav změnit silovým působením jiných těles.

Můžeme definovat 1. Newtonův zákon také slovy: Těleso setrvává v klidu nebo v rovnoměrném přímočarém pohybu, dokud na něj nepůsobí žádné síly? Ne tak docela!!! Podívejme se na následující příklad. FG G F F = FG Válec je položen na vodorovné podložce. Jaké síly v tomto případě působí? Na válec působí Země tíhovou silou FG. Válec působí na podložku tíhou G. Stejně velkou silou, ale opačného směru působí podložka na válec silou F. Na samotný válec pak působí jen síly FG a F. Ty jsou však stejně velké a opačného směru a jejich výslednice je rovna nule. Proto se tyto dvě síly svými účinky ruší. Raději definujeme 1. Newtonův zákona slovy: Těleso setrvává v klidu nebo v rovnoměrném přímočarém pohybu, pokud výslednice všech sil, kterými na těleso působí jiná tělesa, je rovna nule.

Setrvačnost tělesa je definována jako: Schopnost tělesa setrvávat v určitém pohybovém stavu nebo odolávat silovému působení jiných těles vedoucí ke změně pohybového stavu tělesa. Prostudujme následující příklad ze života: V autobuse, který je v klidu, stojí cestující. I on se tedy nepohybuje. Pokud se však autobus rozjede zrychleným pohybem, padá cestující dozadu. Je to proto, že zatímco nohy cestujícího jsou již v pohybu, neboť se dotýkají podlahy autobusu, horní část těla ještě setrvává v původním pohybovém stavu, tedy v klidu, a tak se opožďuje za nohami. Pokud se autobus pohybuje rovnoměrným pohybem, je cestující vzhledem k autobusu v klidu. Jestliže autobus narazí na pevnou překážku, padá cestující na podlahu směrem dopředu. Je to dáno tím, že autobus se již nepohybuje, ale cestující setrvává v původním pohybovém stavu s původní rychlostí a také v původním směru.

Rizika zanedbání setrvačnosti Setrvačnost se uplatňuje v mnoha situacích běžného života. V některých případech, kdy setrvačnost podceníme, hrozí těžké úrazy a velké majetkové škody. Ale jsou i případy, u nichž naopak setrvačnost využijeme. Rizika zanedbání setrvačnosti Využití setrvačnosti Jízda v dopravních prostředcích Jízda na kole po přerušení šlapaní Uklouznutí při chůzi Vytřepání prachu z textilní hadry Brzdící auta před přechody chodců Odstředivky prádla Pohyblivé náklady na korbách aut Řazení vagónů na nádraží Přelévání tekutých hmot v cisternách při jízdě v zatáčkách a brzdění Narážení násady kladiva na toporo Vyhazování předmětů z jedoucích dopravních prostředků Pohyb míče, puku, bowlingové koule

Obě síly, které působí na vozíček, jsou stejně velké, opačného směru. Vozíček se pohybuje rovnoměrným pohybem po rovné podložce bez valivého odporu a odporovou sílu vzduchu rovněž zanedbejme. Vozíček najednou sjede na nerovnou měkkou podložku, čímž mezi koly a podložkou vzniká odporová síla Fv, nazývaná valivý odpor. Současně na vozíček začneme působit tažnou silou F, jak ukazují obrázky níže. Určete, v jakém pohybovém stavu se vozíček nachází v jednotlivých případech, které jsou na obrázcích znázorněny. Obě síly, které působí na vozíček, jsou stejně velké, opačného směru. Jejich výslednice je nulová, a tak obě síly nemají na pohyb vozíčku žádný vliv, takže se vozíček bude pohybovat i nadále rovnoměrným pohybem. Tažná síla je větší než valivý odpor. Velikost výslednice těchto sil je dána rozdílem jejich velikostí a její směr je stejný jako směr větší síly, takže směr tažné síly. Vlivem výsledné síly se pohybový stav vozíčku změní a začne se pohybovat rovnoměrně zrychleným pohybem. Tažná síla je menší než valivý odpor. Velikost výslednice je dána rozdílem jejich velikostí a má směr síly valivého odporu. Vlivem výsledné síly se pohybový stav vozíčku změní a začne se pohybovat rovnoměrně zpomaleným pohybem. F Fv F = Fv F Fv F > Fv F Fv F < Fv

Chlapec na horském kole má sjíždět z kopce Chlapec na horském kole má sjíždět z kopce. Za jakých podmínek bude pohyb kola rovnoměrný, jestliže cyklista nemá při jízdě šlapat? FG1 Fv Fo Fb Nejprve si popišme, jaké síly na cyklistu při jízdě z kopce působí. Jednak je to síla FG1, což je složka tíhové síly, kterou na cyklistu působí Země a která způsobuje zrychlený pohyb cyklisty z kopce dolů. Dále pak síla Fv, což je valivý odpor působící proti pohybu valícího se tělesa, pak Fo, což je odporová síla vzduchu, který cyklista při svém pohybu rozráží, a konečně síla Fb, kterou působí brzdové špalíčky na ráfky kol při brzdění. Z 1. Newtonova pohybového zákona vyplývá, že těleso setrvává v rovnoměrném přímočarém pohybu, pokud výslednice všech sil, které na těleso působí, je rovna nule. Tedy v našem příkladě musí platit vektorový součet všech působících sil: A odsud: Posledně uvedený vzorec je současně i podmínkou proto, aby pohyb cyklisty byl rovnoměrný.

Konec zdroje www.google.com Obrázky Newtonovy pohybové zákony PPT PaedDr. Pavel Geher.