Základy informatiky přednášky Kódování.

Slides:



Advertisements
Podobné prezentace
Vestavné mikropočítačové systémy
Advertisements

Pojem FUNKCE v matematice
Tato prezentace byla vytvořena
1 – Informatika Nauka (tj. věda) o informacích, tj. o zápisu (kódování (angl.)), přenosu (transfer (angl.)), zpracování (procesování (angl.)) informací.
Algebra.
ENVIRONMENTÁLNÍ INFORMATIKA A REPORTING
ENVIRONMENTÁLNÍ INFORMATIKA A REPORTING
Vznik a vývoj teorie informace
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Informatika pro ekonomy II přednáška 1
1 Číslo-název šablony klíčové aktivityIII/2–Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblastZáklady informatiky a hardware DUMVY_32_INOVACE_ODB_521.
Základy informatiky přednášky Pojem informace.
Základy informatiky přednášky Efektivní kódy.
Pravděpodobnost a statistika opakování základních pojmů
Obsah prezentace Náhodná proměnná Rozdělení náhodné proměnné.
Náhodná veličina.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Informatika pro ekonomy II přednáška 2
Základy informatiky přednášky Entropie.
SWI072 Algoritmy komprese dat1 Algoritmy komprese dat Statistické metody komprese dat a Shannon-Fanův kód.
REDUKCE DAT Díváme-li se na soubory jako na text, pak je tento text redundantní. Redundance vyplývá z:  některé fráze nebo slova se opakují  existuje.
Radim Farana Podklady pro výuku pro akademický rok 2013/2014
SWI072 Algoritmy komprese dat1 Algoritmy komprese dat Teorie informace.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Matematický aparát v teorii informace Základy teorie pravděpodobnosti
F U N K C E.
Základy číslicové techniky
Základy informatiky přednášky Bezpečnostní kódy.
CZ.1.07/1.4.00/ VY_32_INOVACE_146_IT7 Výukový materiál zpracovaný v rámci projektu Vzdělávací oblast: Informační a komunikační technologie Předmět:Informatika.
Číselné soustavy david rozlílek ME4B
KOMBINAČNÍ LOGICKÉ FUNKCE
Přenos dat, kódování.
ZÁZNAM A KÓDOVÁNÍ INFORMACÍ
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Pre-algebra Antonín Jančařík.
Základy číslicové techniky
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Pre-algebra Antonín Jančařík.
Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Úvod do programování.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Automaty a gramatiky.
Převody mezi číselnými soustavami 1
Radim Farana Podklady pro výuku
Informatika pro ekonomy přednáška 4
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorIng. Ivana Brhelová Název šablonyIII/2.
(Popis náhodné veličiny)
Radim Farana Podklady pro výuku
Měřické chyby – nejistoty měření –. Zkoumané (měřené) předměty či jevy nazýváme objekty Na každém objektu je nutno definovat jeho znaky. Mnoho znaků má.
Ústav technických zařízení budov MĚŘENÍ A REGULACE Ing. Václav Rada, CSc. ZS – 2003/
Náhodná veličina. Nechť (, , P) je pravděpodobnostní prostor:
Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Číselné soustavy.
Financováno z ESF a státního rozpočtu ČR.
Základní pojmy v automatizační technice
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_32_INOVACE_18-17
Znázornění dopravní sítě grafem a kostra grafu Předmět: Teorie dopravy - cvičení Ing. František Lachnit, Ph.D.
AUTOMATIZAČNÍ TECHNIKA Kódy
Financováno z ESF a státního rozpočtu ČR.
Ukládání dat v paměti počítače
Informatika pro ekonomy přednáška 3
Teorie informace z latiny, už 1stol. př. n. l.
Číslicová technika.
Číselné soustavy Číselné soustavy reprezentují čísla, která jsou pro nás symbolem určitého množství – kvantity. Desítkovou soustavu se učíme již v první.
Informatika pro ekonomy přednáška 3
Informatika pro ekonomy přednáška 4
Šestnáctková a osmičková soustava
Informatika pro ekonomy přednáška 4
Transkript prezentace:

Základy informatiky přednášky Kódování

ZÁKLADY INFORMATIKY – Elementární teorie kódování Vznik a vývoj teorie informace Matematický aparát v teorii informace Základy teorie pravděpodobnosti – Náhodné veličiny Číselné soustavy Informace Základní pojmy – jednotka a zobrazení informace, informační hodnota Entropie – vlastnosti entropie Zdroje zpráv – spojité zdroje zpráv, diskrétní zdroje zpráv Přenos informace – vlastnosti přenosu kanálů, poruchy a šumy přenosu, způsoby boje proti šumu Kódování Elementární teorie kódování Rovnoměrné kódy – telegrafní kód Nerovnoměrné kódy – Morseova abeceda, konstrukce nerovnoměrných kódů Efektivní kódy – Shannonova – Fanova metoda, Huffmanova metoda Bezpečností kódy Zabezpečující schopnosti kódů, Systematické kódy, Nesystematické kódy

KÓDOVÁNÍ ELEMENTÁRNÍ TEORIE KÓDOVÁNÍ

ELEMENTÁRNÍ TEORIE KÓDOVÁNÍ Dvojková soustava, s kterou počítače běžně pracují, je nevýhodná pro lidské uvažování - neumíme v ní běžně počítat. Proto k převodu mezi „lidskými“ informacemi a počítači existují převodní pravidla kódy. Kód je množina symbolů, kterými vyjadřujeme různé stavy systému. Kód lze libovolně převádět jeden na druhý, aniž by se změnila velikost a množství informace.

Kódování pak můžeme charakterizovat jako převod jednoho kódu na druhý a to buď pomocí tabulky anebo algoritmu. Pro ukázku si zvolme jako zkušební systém hrací kostku. Po hodu se může kostka nacházet v jednom ze šesti stavů (poloh). Stav (poloha) kostky se nejčastěji vyjadřuje pomocí množiny tečkových symbolů: Když si chceme poznamenat jak nám kostka při hře padla neuděláme to zápisem tečkových symbolů, ale číslicemi (1,2,3,4,5,6) odpovídajícími počtu teček převedeme z jedné množiny symbolů do druhé.

Vztah mezi symbolem, kódem a kódováním nám znázorňuje obrázek: Síť kostky (symboly) Kód 1 Kód 2 Kód 3 1 2 3 4 5 6 A B C D E F 7 8 9 kostka kódování Na obrázku je ukázka kódování do třech různých kódů.

Vyjádřeno matematicky: Při přenosu informací používáme dvě základní abecedy. Zdrojová abeceda (abeceda zdroje) A={ a1, ... , aN } je konečná množina znaků (symbolů) ai, kterou chceme přenést přes nějaké přenosové zařízení (přenosový kanál). Přenosová abeceda (abeceda přenosového kanálu) Y={ y1, ... , yR } je konečná množina znaků yj, kterou můžeme přenášet přes nějaké přenosové zařízení. Např. zařízení se dvěma úrovněmi řízení (0,1) bude mít abecedu Y={ y1, y2 }={ 0,1 }.

Množina všech kódových slov se pak nazývá kód. Pod kódováním pak rozumíme zobrazení, které každému znaku aiA přiřadí nějakou skupinu znaků yjY kódové slovo. Množina všech kódových slov se pak nazývá kód. Délka kódu – počet kódových slov daného kódu Pokud délka kódového slova je m pak délka kódu je dána vztahem: (R – počet prvků přenosové abecedy) L = Rm Dále se budeme zabývat pouze dvojkovými (binárními) kódy => přenosová abeceda má jen dva prvky {0, 1} Délka kódu L se bude tedy pohybovat v rozmezí daném nerovností: 1 ≤ L ≥ 2m

Říkáme, že kód má 2m! kódovacích klíčů. Kombinační možnost vzájemného přiřazení množiny kódových slov a množiny znaků zdrojové abecedy je dána permutací, tj. 2m! Říkáme, že kód má 2m! kódovacích klíčů. Výskyt jednotlivých znaků zdrojové abecedy = různá pravděpodobnost pravděpodobnost výskytu kódových slov se liší rozdílná hodnota kódovacích klíčů Výhodnější jsou takové kódovací klíče, které přiřazují odolnější kódové slova (kratší) nejčastěji se vyskytujícím znakům zdrojové abecedy. Je výhodnější nevyužívat maximální délky kódu L, nýbrž počítat (s ohledem na zvýšení bezpečnosti přenosu) pouze s délkou zkrácenou LZ .

Kódování však nemá pouze mechanicky nahrazovat jednu konkrétní abecedu jinou. Mění-li se při kódování množina použitých symbolů i rozložení pravděpodobností, mění se také entropie na symbol zprávy. Hlavním cílem je zajistit nejmenší počet symbolů na dané množství informace. Důležité je, aby bylo možné ze zakódované zprávy získat zprávu zdrojovou  kódování musí být jednoznačně dekódovatelné. Kódování je jednoznačně dekódovatelné tehdy, jestliže zobrazení, které každému znaku aiA přiřadí nějakou skupinu znaků yjY je prostým zobrazením.

Pojem slovo (kódové slovo) nad danou abecedou se liší od pojmu slova používaného v běžném hovorovém jazyce (slovem rozumíme nejmenší samostatnou jazykovou jednotku mající věcný a mluvnický význam). Umělým jazykem (stručně jazykem) nazýváme nějakou abecedu spolu s pravděpodobnostními zákony, podle nichž vzniká z dané abecedy zpráva. Je-li H entropie daného jazyka a Hmax je maximální entropie při použití téže abecedy pak můžeme definovat redundanci (nadbytečnost) daného jazyka jako: Redundance evropských jazyků je větší než 0.5 a podle některých propočtů se pohybuje od 0.68 do 0.75.

Rozdělení kódů Podle použití se dělí dvojkové kódy Podle struktury na kódy určené k matematickým operacím, kódy určené k přenosu zpráv Podle struktury na kódy nesystematické kódy systematické Podle délky na kódy rovnoměrné kódy nerovnoměrné

KONEC