Goniometrické funkce Sinus ostrého úhlu

Slides:



Advertisements
Podobné prezentace
V PRAVOÚHLÉM TROJÚHELNÍKU
Advertisements

Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
 Škola: Střední škola právní – Právní akademie, s.r.o.  Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT  Projekt: CZ.1.07/1.5.00/
POZNÁMKY ve formátu PDF
Matematika Trojúhelník.
trojúhelníka Konstrukce Milan Hanuš,
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Výukový materiál byl zpracován v rámci projektu
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Trojúhelník – II.část Mgr. Dalibor Kudela
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
- řešení pravoúhlého trojúhelníku
PYTHAGOROVA VĚTA příklady
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Goniometrické funkce Autor © Mgr. Radomír Macháň
SINUS KOSINUS. VLASTNOSTI GONIOMETRICKÝCH FUNKCÍ  Funkce sinus a kosinus patří mezi goniometrické funkce.  Goniometrické funkce tvoří skupina šesti.
Pythagorova věta - výpočty
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Mgr. David Vencl Číslo projektuCZ.1.07/1.4.00/ Šablona klíčové aktivityIII/2 SadaMatematika NázevSinus - cvičení Klíčová slova Goniometrické funkce,
Pravoúhlý trojúhelník
14_Řešení pravoúhlého trojúhelníka – Euklidovy věty
60. 1 Goniometrické funkce a jejich vlastnosti III.
Konstrukce trojúhelníku - Thaletova kružnice
PRAVOÚHLÝ TROJÚHELNÍK
5_Kružnice, kruh Kružnice k (S, r) je množina všech bodů roviny, které mají od středu S vzdálenost r. S – střed, r – poloměr, d – průměr Platí: d = 2r.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Goniometrické funkce funkce tangens a kotangens
Goniometrické funkce Kotangens ostrého úhlu
* Pythagorova věta Matematika – 8. ročník *
Autor: Mgr. Jana Pavlůsková Datum: duben 2012 Ročník: 8. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
57.1 Goniometrické funkce a jejich vlastnosti II.
Goniometrické funkce funkce sinus
V PRAVOÚHLÉM TROJÚHELNÍKU
* Thaletova věta Matematika – 8. ročník *
IDENTIFIKÁTOR MATERIÁLU: EU
IDENTIFIKÁTOR MATERIÁLU: EU
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jaroslava Holečková. Dostupné z Metodického portálu ISSN: Provozuje.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Pravoúhlý trojúhelník (procvičování)
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín VY_32_INOVACE_M_09 Goniometrické funkce - kosinus Zpracovala: Mgr. Květoslava Štikovcová.
PRAVOÚHLÉHO TROJÚHELNÍKU
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce funkce kosinus
IDENTIFIKÁTOR MATERIÁLU: EU
SINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Matematika – 7.ročník VY_32_INOVACE_
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Goniometrické funkce Autor © Mgr. Radomír Macháň
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
COSINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce v pravoúhlém trojúhelníku
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Transkript prezentace:

Goniometrické funkce Sinus ostrého úhlu * 16. 7. 1996 Goniometrické funkce Sinus ostrého úhlu Matematika – 9. ročník *

Strany pravoúhlého trojúhelníku Pravoúhlý trojúhelník Co už víme C · odvěsna odvěsna A přepona B Strany pravoúhlého trojúhelníku

Pravoúhlý trojúhelník Co už víme 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 · odvěsna odvěsna b a A přepona c B Pythagorova věta

Pravoúhlý trojúhelník Co už víme · · A S c B · · Množinou vrcholů všech pravoúhlých trojúhelníků s přeponou AB je kružnice k s průměrem AB mimo bodů A a B. Thaletova věta

Strany pravoúhlého trojúhelníku Pravoúhlý trojúhelník C · přilehlá protilehlá odvěsna odvěsna k úhlu a k úhlu a b a a A přepona c B Strany pravoúhlého trojúhelníku

Strany pravoúhlého trojúhelníku Pravoúhlý trojúhelník C · protilehlá přilehlá odvěsna odvěsna k úhlu b k úhlu b b a b A přepona c B Strany pravoúhlého trojúhelníku

Podobnost trojúhelníků Sinus ostrého úhlu 𝐶 3 · 𝐶 2 · 𝐶 1 · 𝐶 · 𝐵 3 𝐵 2 𝐵 1 a 𝐵 ∆𝑨𝑩𝑪~∆𝑨 𝑩 𝟏 𝑪 𝟏 ~∆𝑨 𝑩 𝟐 𝑪 𝟐 ~∆𝐀 𝑩 𝟑 𝑪 𝟑 (𝑝𝑜𝑑𝑙𝑒 𝑣ě𝑡𝑦 𝑢𝑢) 𝐴 platí: 𝐵𝐶 : 𝐴𝐵 = 𝐵 1 𝐶 1 : 𝐴 𝐵 1 = 𝐵 2 𝐶 2 : 𝐴 𝐵 2 = 𝐵 3 𝐶 3 : 𝐴 𝐵 3 Poměr délky odvěsny protilehlé k úhlu a a délky přepony je ve všech trojúhelnících se stejným ostrým úhlem a stejný. Tento poměr nazýváme sinus a a zapisujeme 𝐬𝐢𝐧= 𝐩𝐫𝐨𝐭𝐢𝐥𝐞𝐡𝐥á 𝐨𝐝𝐯ě𝐬𝐧𝐚 𝐩ř𝐞𝐩𝐨𝐧𝐚 = 𝐚 𝐜

Sinus ostrého úhlu Pravoúhlý trojúhelník ABC má délky stran: a = 9 cm; b = 12 cm; c = 15 cm. Určete sin a a sin b . 𝑠𝑖𝑛= 𝑎 𝑐 𝑠𝑖𝑛= 𝑏 𝑐 C · protilehlá přilehlá přilehlá protilehlá b 𝑠𝑖𝑛= 9 15 𝑠𝑖𝑛= 12 15 odvěsna odvěsna k úhlu a k úhlu b k úhlu a k úhlu b 𝑠𝑖𝑛= 3 5 𝑠𝑖𝑛= 4 5 a b a 𝑠𝑖𝑛=0,6 𝑠𝑖𝑛=0,8 A přepona c B

Funkce y = sin x Každému ostrému úhlu přísluší právě jedna hodnota sinus. Sinus ostrého úhlu je číslo, které je vždy větší než 0 a menší než 1. Proč? Protože délka odvěsny je vždy menší než délka přepony. Předpis, který přiřazuje každému ostrému úhlu jeho hodnotu sinus se nazývá funkce sinus a zapisuje se y = sin x. Definiční obor funkce y = sin x  D(f) = (0°; 90°), obor hodnot H(f) = (0; 1) (platí pro ostré úhly) Sestrojte graf funkce y = sin x

Sestrojte graf funkce y = sin x sin a 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 O 10° 20° 30° 40° 50° 60° 70° 80° 90° a

Graf funkce y = sin x Grafem funkce y = sin x je sinusoida. Pro funkci s definičním oborem D(f) = (0°; 90°) je grafem její část. Pro funkci s definičním oborem D(f) = R má tvar.

Tabulka základních funkčních hodnot funkce y = sin x 𝟐 𝟐 𝟑 𝟐 𝟏 𝟐 𝟎 𝟏 Ostatní hodnoty lze určit z grafu funkce, nalézt v tabulkách, určit pomocí kalkulačky či dohledat na Internetu. Například: http://www.aristoteles.cz/matematika/funkce/goniometricke/tabulka-hodnot-funkci-sinus-cosinus.php

Sinus ostrého úhlu Příklady 1. Urči: 2. Urči velikost úhlu a, když: a) sin 62° = 0,882 9 (výsledky zaokrouhli na čtyři desetinná místa) b) sin 52°40´ = 0,795 1 · c) sin 28°17´ = sin 28°20´ = 0,474 6 · d) sin 81,3° = sin 81°18´ = sin 81°20´ = 0,988 6 2. Urči velikost úhlu a, když: a) sin a = 0,241 9 a = 14° b) sin a = 0,769 8 a = 50°20´ c) sin a = 0,382 1 a = 22°30´ d) sin a = 1,004 6 sin a > 1 => úloha nemá řešení