INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Slides:



Advertisements
Podobné prezentace
Vedení elektrického proudu v polovodičích
Advertisements

Gymnázium, Havířov-Město, Komenského 2, p.o
Polovodičová dioda (Učebnice strana 66 – 70)
Příměsové polovodiče.
Vedení elektrického proudu v látkách I
PN přechod v el. poli.
Tato prezentace byla vytvořena
POLOVODIČE.
Tato prezentace byla vytvořena
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření:
Tato prezentace byla vytvořena
POLOVODIČE Polovodiče jsou pevné látky, které jsou určitých okolností vodiči a za jiných okolností izolanty. Z hlediska využití v praxi jsou nejdůležitějšími.
Tato prezentace byla vytvořena
Výuková centra Projekt č. CZ.1.07/1.1.03/
28. Elektrický proud v polovodičích
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/
Polovodiče ZŠ Velké Březno.
Elektromagnetické vlnění
PN přechod Autor: Mgr. Marcela Vonderčíková Fyzika: 9. ročník
Vlastní vodivost.
Tranzistor je polovodičová součástka se dvěma přechody P-N.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
POLOVODIČE Polovodič je látka, jehož elektrická vodivost závisí na vnějších nebo vnitřních podmínkách a dá se změnou těchto podmínek snadno ovlivnit. Příkladem.
ELEKTRICKÝ PROUD V POLOVODIČÍCH
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/
SOUČÁSTKY ŘÍZENÉ SVĚTLEM 1
Polovodičová dioda a její zapojení
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Tato prezentace byla vytvořena
Tato prezentace byla vytvořena
TYPY POLOVODIČOVÝCH DIOD
Vznik přechodu P- N Přechod P- N vznikne spojením krystalů polovodiče typu P a polovodiče typu N: “díra“ elektron.
Tato prezentace byla vytvořena
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Polovodiče Mgr. Veronika Kuncová, 2013.
Tento materiál byl vytvořen jako učební dokument projektu inovace výuky v rámci OP Vzdělávání pro konkurenceschopnost VY_32_INOVACE_D3 – 14.
SOUČÁSTKY ŘÍZENÉ NEELEKTRICKÝMI VELIČINAMI
SOUČÁSTKY ŘÍZENÉ SVĚTLEM 2
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/
Další součástky s jedním přechodem PN Autor: Mgr. Lenka Rohanová Fyzika Inovace výuky na Gymnáziu Otrokovice formou DUMů CZ.1.07/1.5.00/
POLOVODIČOVÉ NĚKOLIKAVRSTVOVÉ SPÍNACÍ SOUČÁSTKY
Didaktický učební materiál pro ZŠ INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Autor:Bc. Michaela Minaříková Vytvořeno:březen 2012 Určeno:9. ročník.
Elektronické zesilovače
BIPOLÁRNÍ TRANZISTOR Ing. Jaroslav Chlubný. 1 STRUKTURA NAPÁJENÍ A PROUDY TRANZISTORU ZÁKLADNÍ ZAPOJENÍ TRANZISTORU TYPY A PARAMETRY Bipolární tranzistor.
P OLOVODIČOVÁ DIODA Mgr. Kamil Kučera. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro.
Vedení elektrického proudu v polovodičích. Struktura prezentace otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
 ČÍSLO PROJEKTU: 1.4 OP VK  NÁZEV: VY_32_INOVACE_01  AUTOR: Mgr., Bc. Daniela Kalistová  OBDOBÍ:  ROČNÍK: 9  VZDĚLÁVACÍ OBLAST: Člověk a.
ELEKTROTECHNOLOGIE TECHNICKY VYUŽÍVANÉ JEVY V POLOVODIČÍCH.
ELEKTRONIKA Bipolární tranzistor. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT.
Uvedení autoři, není-li uvedeno jinak, jsou autory tohoto výukového materiálu a všech jeho částí. Tento projekt je spolufinancován ESF a státním rozpočtem.
Jan HruškaTV-FYZ. Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách.
FYZIKÁLNÍ KUFR Téma: Vedení elektrického proudu v polovodičích (9. ročník) Dostupné z Metodického portálu ISSN: , financovaného z.
VYUŽITÍ POLOVODIČŮ V PRAXI
VYUŽITÍ POLOVODIČŮ Málokterý vynález tak ovlivnil současnou dobu jako vynález tranzistoru roku Tato nepatrná polovodičová součástka umožnila nesmírně.
ELEKTRONIKA Součástky řízené světlem
Fotodioda Nina Lomtatidze
POLOVODIČE Polovodiče jsou materiály ze 4. skupiny PT.
VY_32_INOVACE_13_Polovodičová dioda
FYZIKÁLNÍ KUFR Téma: Vedení elektrického proudu
Odborný výcvik ve 3. tisíciletí
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov
POLOVODIČE Polovodiče jsou pevné látky, které jsou určitých okolností vodiči a za jiných okolností izolanty. Z hlediska využití v praxi jsou nejdůležitějšími.
POLOVODIČE SVĚT ELEKTRONIKY.
DIODOVÝ JEV.
Fyzika 2.D 17.hodina 01:06:36.
Vedení elektrického proudu v polovodičích
Název školy: ZŠ Bor, okres Tachov, příspěvková organizace
Základní škola Zlín, Nová cesta 268, příspěvková organizace
Transkript prezentace:

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR ZŠ, Týn nad Vltavou, Malá Strana

Polovodičové součástky shrnutí Fyzika 9. ročník Marcela Kubátová

Obsah: 0 přechodů P-N 1 přechod P-N 2 přechody P-N 3 přechody P-N

Termistor Termistory se vyrábějí z oxidu kovu (Mn, Fe, Co, Ni, …), který se rozemele na prášek a podle požadovaných vlastností vyráběného termistoru se přidají další příměsi a pojidlo. Poté se směs za vysokého tlaku slisuje. Podle závislosti odporu na teplotě existují dva druhy: 1. NTC (se záporným teplotním součinitelem odporu) - s rostoucí teplotou jeho odpor klesá. Užívá se k měření teploty, k určování velikosti rychlosti proudění tekutin (tekutina proudí, ochlazuje ho a je tedy možné určit velikost rychlosti proudění), převodník teplota - napětí (při měření teploty na počítačích), v obrazovkách (zabraňuje žhavícímu vláknu se) 2. PTC (pozistor; s kladným teplotním součinitelem odporu) - s rostoucí teplotou roste odpor, přičemž roste mnohem rychleji než u kovů. Užívá se v elektrických troubách a vařičích ke stabilizaci napětí, zabraňuje spálení motorů, indikuje vzrůst nebo pokles teploty, využívá se v termostatech http://dibujoe.iespana.es/intere30.jpg

Fotorezistor je součástka, která využívá energii dopadajícího světla ke zmenšení svého odporu. Vyrábí se nejčastěji ze CdS, CdSe. Po dopadu světla vzniká pár elektron - díra a tím se zvětšuje vlastní vodivost polovodiče. S růstem vodivosti klesá odpor fotorezistoru. Fotorezistory citlivé na infračervené záření jsou náročnější na výrobu, protože energie infračerveného záření je menší než energie viditelného světla. Praktické použití: fotografování Země v infračerveném oboru spektra (infračervené záření proniká atmosférou), dálkové ovládání přístrojů, optické kabely (kterými lze přenášet až 30000 hovorů najednou), … http://www.ezk.cz/e-shop/img/det/fotorezi.jpg

Usměrňující dioda Používají se běžně dva základní typy: hrotová a plošná. Hrotová dioda se vyrábí tak, že k polovodičové destičce (většinou typu N) se přitlačí hrotem wolframový drátek, kterým se nechá krátkodobě projít elektrický proud. Tím dojde k přivaření drátku a vzniká stabilní přechod PN. Plocha přechodu je malá, proto může diodou procházet malý proud. využití hrotové diody: usměrnění vysokofrekvenčních proudů (rádiové a televizní přijímače, …). Čím vyšší frekvence, tím lépe bude proud usměrněn. Plošná dioda má velkou plochu a proto i velkou kapacitu; je tedy nevhodná pro usměrnění proudů vysoké frekvence. Díky velké ploše, snese dioda velký proud (až 1000 A,je-li řádně chlazena).

Fotodioda do oblasti přechodu PN proniká elektromagnetické záření, které generuje páry elektron – díra Osvětlený přechod PN je vodivý i v závěrném směru a sám se stává zdrojem napětí. Tohoto jevu se využívá k přímé přeměně energie světelného záření na energii elektrickou (např. sluneční baterie). Jiná možnost využití fotodiody je zapojení jako odporová - tj. neosvětlena má fotodioda velký odpor, po osvětlení odpor klesne a diodou (obvodem) začne procházet elektrický proud, jehož velikost je závislá na osvětlení fotodiody. http://www.tme.eu/katalog_pics/9/b/9/9b9d7e3f8da7b5a8409d78f5c3679f93/bpw24r.jpg

LED dioda LED je zkratka anglického výrazu Light Emitting Diode Barva světla je dána použitým materiálem. Nejjednodušší je výroba červené LED, protože červené světlo má nejmenší energii, ale vyrábějí se i modré LED (modré světlo má energii největší). Existují také infračervené LED. Při zapojování LED do obvodu je nutno dbát na správnou polaritu! V případě, že zapojíme LED do obvodu opačně, elektrický proud jí nebude procházet. Navíc hrozí nebezpečí jejího zničení. Kladnou resp. zápornou elektrodu LEDky poznáme v praxi jednoduše: katoda (tedy záporná elektroda, která se připojuje k zápornému pólu zdroje napětí) je kratší. http://www.kolli.cz/novyshop/images/1b3.jpg

Tranzistor Je tvořen krystalem se dvěma přechody PN. Střední část krystalu je báze B a přechody PN ji oddělují od oblasti s opačným typem vodivosti, které označujeme jako kolektor C a emitor E. Podle druhu vodivostí jednotlivých částí označujeme tranzistory jako typ NPN a PNP. Tranzistor má dva obvody - vstupní a výstupní. Proto by měl mít čtyři vývody. Tranzistor má však ve skutečnosti pouze tři vývody (elektrody); jedna elektroda je společná oběma obvodům. Proto se rozlišují zapojení se společnou bází, zapojení se společným kolektorem nebo zapojení se společným emitorem. Tranzistor jako zesilovač: jeden přechod v propustném a druhý v závěrném směru - jedná se o dvě záměnné možnosti. http://innovision-group.net/catalog/images/Power_Transistor.jpg

Tyristor součástka sloužící ke spínání elektrického proudu, fungující jako řízený elektronický ventil tyristor je čtyřvrstvá spínací součástka (obvykle PNPN), která nevykazuje usměrňující účinky jako dioda, avšak je možné ji ovládat (spínat) pomocí impulsu do řídicí elektrody G (Gate). Jedná se o velice účinný nástroj pro řízení velmi výkonných elektrických strojů. V moderních elektrických lokomotivách se používá nejčastěji pro regulaci výkonu motorů pro stejnosměrný proud.

Zdroje: http://fyzika.jreichl.com/index.php?sekce=browse&page=269 www.gymcv.cz/view.php?cisloclanku=2005090001 http://cs.wikipedia.org/wiki/Tyristor