Vzájemná poloha kružnice a přímky

Slides:



Advertisements
Podobné prezentace
Rozcvička Urči typ funkce:
Advertisements

Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Matematika – 8.ročník Přímka a kružnice
Vzájemná poloha přímky a kružnice (kruhu)
Vzájemná poloha dvou kružnic
Vzájemná poloha dvou kružnic
1. Bodem, který leží na kružnici 2. Bodem, který leží mimo kružnici
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Konstrukce lichoběžníku 1
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Základní konstrukce Kolmice.
Vzájemná poloha dvou kružnic
Dostupné z Metodického portálu www. rvp
Rozdělení kulových zrcadel a zobrazovací význačné paprsky
Zobrazení dutým zrcadlem
KRUŽNICE.
POZNÁMKY ve formátu PDF
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Vzájemná poloha dvou kružnic
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Vzájemná poloha přímky a kružnice
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Tento Digitální učební materiál vznikl díky finanční podpoře EU- Operačního programu Vzdělávání pro konkurenceschopnost Není –li uvedeno jinak, je tento.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Konstrukce mnohoúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Orofacionální cvičení I Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Vzájemné polohy 8. ročník
Momentová charakteristika – chod při zatížení Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno.
Vzájemná poloha kružnice a přímky
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Třeťáci a matematika 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je PaedDr. Marie Janků. Dostupné z Metodického portálu
VY_42_INOVACE_422_VZÁJEMNÁ POLOHA DVOU KRUŽNIC 2 Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM prosinec 2012 Ročník použití VM 8. ročník Vzdělávací.
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: 585.
Množina bodů dané vlastnosti
Vzájemná poloha dvou kružnic
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Bodová konstrukce hyperboly
Kruh, kružnice Základní pojmy
Konstrukce tečen pomocí Thaletovy kružnice
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
PROVĚRKY Převody jednotek času.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
III. část – Vzájemná poloha přímky
Rozklad čísel 6 – 10 – doplňování varianta A
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Základní škola, Moravský Krumlov, náměstí Klášterní 134, okres Znojmo, příspěvková organizace VY_32_INOVACE_15_MII_VZÁJEMNÁ POLOHA PŘÍMKY A KRUŽNICE.
VY_42_INOVACE_416_VZÁJEMNÁ POLOHA KRUŽNICE A PŘÍMKY Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM prosinec 2012 Ročník použití VM 8. ročník Vzdělávací.
Kruh, kružnice Základní pojmy
Kruh, kružnice Základní pojmy
Vzájemná poloha paraboly a přímky
Bodová konstrukce hyperboly
Vzájemná poloha dvou kružnic
Vzájemná poloha paraboly a přímky
Grafické násobení a sčítání úhlů
III. část – Vzájemná poloha přímky
IV. část – Vzájemná poloha dvou
1. Bodem, který leží na kružnici 2. Bodem, který leží mimo kružnici
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Konstrukce trojúhelníku
Vzájemná poloha dvou kružnic
Analytický geometrie kvadratických útvarů
Vzájemná poloha kružnice a přímky
Transkript prezentace:

Vzájemná poloha kružnice a přímky Kružnice a přímka Vzájemná poloha kružnice a přímky Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Načrtněte si kružnici k(S; r) a přímku. r Jaké možné polohy přímky vzhledem ke kružnici mohou nastat? S C t D p

Nastanou tyto případy: Přímka n nemá s kružnicí k žádný společný bod. Přímka t má s kružnicí k jeden společný bod. Přímka p má s kružnicí k dva společné body.

Vnější přímka kružnice Vzdálenost středu kružnice S od přímky n je větší než poloměr kružnice. k S l > r r n  k =  l n .

Tečna l = r t  k = T k S r l t . T Bod T – bod dotyku. Vzdálenost středu kružnice S od přímky t je rovna poloměru kružnice. k S l = r r t  k = T l t . Bod T – bod dotyku. T

Sečna l < r p  k = C, D k S l p . r D C Vzdálenost středu kružnice S od přímky p je menší než poloměr kružnice. k S l < r l p  k = C, D p . r D C, D – průsečíky sečny s kružnicí C úsečka CD – tětiva