Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnice Ekvivalentní úpravy rovnic 2. část
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Na úvod si zopakujeme tři již známé ekvivalentní úpravy: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. 6 = 5 + x L = P P = L 5 + x = 6 x – 3 = x – 3 = 5 x = 8 / - 3 x + 3 = 5 x = 2 /
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Další ekvivalentní úpravy rovnic Nyní se již vraťme opět k analogii (podobnosti) rovnosti dvou stran rovnice s příklady na udržení rovnováhy na miskách vah. Tak vzhůru na to. Klikněte na obrázek vah a začněte experimentovat s cihličkami na miskách vah podle uvedeného návodu. A dobře si zapamatujte, co jste zjistili! Opět naskládejte na obě misky vah cihličky tak, aby nastala rovnováha. A nemusí to být ani podle zadané rovnice! Pak začneme znovu experimentovat. Poté počet cihliček daného druhu na obou miskách zase dvakrát, případně třikrát zmenšíme. Tentokrát však budeme počet cihliček daného druhu na obou miskách zdvojnásobovat, případně ztrojnásobovat.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Co jste zjistili tentokrát? 4.) Rovnováha opět nastává, když počet odpovídajících si cihliček na obou miskách vah zvýšíme ve stejném násobku (tzn. zvětšíme-li počet cihliček obou druhů na levé i na pravé misce dvakrát, třikrát, …). 5.) A stejně tak rovnováha opět nastává, když počet odpovídajících si cihliček na obou miskách vah ve stejném násobku i snížíme (tzn. zmenšíme-li počet cihliček obou druhů na levé i na pravé misce dvakrát, třikrát, …). A opět platí, že s rovnicemi je to podobné. Pojďme se na to tedy podívat.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze ekvivalentní úprava Jestliže obě strany rovnice vynásobíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění.. 3 / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. : 3 5. ekvivalentní úprava Jestliže obě strany rovnice vydělíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění. / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedeme naznačené početní operace
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: 8 = -4x 8 = -4x / :(-4) 8 : (-4) = -4x : (-4) -2 = x Zk: L = 8 Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedem e naznačené početní operace. P = -4x = -4.(-2) = 8 L = P x = -2 Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. __ 8 -4x -4 =
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: 4 x x __ __ = 1, Vynásobit musíme všechny členy rovnice!!!
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A z násobení na dělení. Celý předcházející příklad ještě jednou, ale s využitím zkráceného zápisu. Přejde-li člen z jedné strany rovnice na druhou, změní se matematická operace, kterou je vázán k ostatním členům, na opačnou: Z dělení na násobení!
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A z násobení na dělení. Podobně příklad č. 4: Přejde-li člen z jedné strany rovnice na druhou, změní se matematická operace, kterou je vázán k ostatním členům na opačnou: Z dělení na násobení!
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Shrňme si tedy na závěr ještě jednou všechny již známé ekvivalentní úpravy rovnic: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. 4. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). 5. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly).