Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Algebraické výrazy: lomené výrazy
Lomené algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy: počítání s mnohočleny
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu www. rvp
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ekvivalentní úprava rovnic
Úpravy algebraických výrazů
Soustava lineárních nerovnic
Rovnost, rozšiřování a krácení.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Řešení lineárních rovnic o jedné neznámé
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustava rovnic Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Lineární rovnice – 2. část
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
Řešení lineárních rovnic s neznámou ve jmenovateli
Definiční obory. Množiny řešení. Intervaly.
Orofacionální cvičení I Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice Řešit rovnici znamená určit neznámou. Při řešení rce se snažíme neznámou dostat na jednu stranu a všechno ostatní na stranu druhou.
Exponenciální rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ROVNICE KOŘENY ROVNICE EKVIVALENTNÍ ÚPRAVY
VY_32_INOVACE_M-Ar 8.,9.07 Lineární rovnice Anotace: Žák si osvojuje řešení lineárních rovnic pomocí ekvivalentních úprav včetně zkoušky. Řeší lineární.
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
(řešení pomocí diskriminantu)
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Jednoduché rovnice, užití druhé ekvivalentní úpravy
Nerovnice Ekvivalentní úpravy.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Řešení lineárních rovnic
Ekvivalentní úpravy rovnic
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Ekvivalentní úpravy rovnic
Řešení nerovnic Lineární nerovnice
Úvod do algebry (řešení jednoduchých rovnic)
Řešení nerovnic Lineární nerovnice 1
Řešení nerovnic Lineární nerovnice
Nerovnice Ekvivalentní úpravy - 2..
Nerovnice Ekvivalentní úpravy - 1..
Název školy: Základní škola Pomezí, okres Svitavy Autor: Kotvová Olga
Ekvivalentní úpravy rovnice
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnice Ekvivalentní úpravy rovnic 2. část

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Na úvod si zopakujeme tři již známé ekvivalentní úpravy: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. 6 = 5 + x L = P P = L 5 + x = 6 x – 3 = x – 3 = 5 x = 8 / - 3 x + 3 = 5 x = 2 /

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Další ekvivalentní úpravy rovnic Nyní se již vraťme opět k analogii (podobnosti) rovnosti dvou stran rovnice s příklady na udržení rovnováhy na miskách vah. Tak vzhůru na to. Klikněte na obrázek vah a začněte experimentovat s cihličkami na miskách vah podle uvedeného návodu. A dobře si zapamatujte, co jste zjistili! Opět naskládejte na obě misky vah cihličky tak, aby nastala rovnováha. A nemusí to být ani podle zadané rovnice! Pak začneme znovu experimentovat. Poté počet cihliček daného druhu na obou miskách zase dvakrát, případně třikrát zmenšíme. Tentokrát však budeme počet cihliček daného druhu na obou miskách zdvojnásobovat, případně ztrojnásobovat.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Co jste zjistili tentokrát? 4.) Rovnováha opět nastává, když počet odpovídajících si cihliček na obou miskách vah zvýšíme ve stejném násobku (tzn. zvětšíme-li počet cihliček obou druhů na levé i na pravé misce dvakrát, třikrát, …). 5.) A stejně tak rovnováha opět nastává, když počet odpovídajících si cihliček na obou miskách vah ve stejném násobku i snížíme (tzn. zmenšíme-li počet cihliček obou druhů na levé i na pravé misce dvakrát, třikrát, …). A opět platí, že s rovnicemi je to podobné. Pojďme se na to tedy podívat.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze ekvivalentní úprava Jestliže obě strany rovnice vynásobíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění.. 3 / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. : 3 5. ekvivalentní úprava Jestliže obě strany rovnice vydělíme stejným číslem (výrazem) různým od nuly, kořen rovnice se nezmění. / Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu Na obou stranách rovnice provedeme naznačené početní operace Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. nebo

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedeme naznačené početní operace

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: 8 = -4x 8 = -4x / :(-4) 8 : (-4) = -4x : (-4) -2 = x Zk: L = 8 Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly). Na obou stranách rovnice provedem e naznačené početní operace. P = -4x = -4.(-2) = 8 L = P x = -2 Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. __ 8 -4x -4 =

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: 4 x x __ __ = 1, Vynásobit musíme všechny členy rovnice!!!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A z násobení na dělení. Celý předcházející příklad ještě jednou, ale s využitím zkráceného zápisu. Přejde-li člen z jedné strany rovnice na druhou, změní se matematická operace, kterou je vázán k ostatním členům, na opačnou: Z dělení na násobení!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A z násobení na dělení. Podobně příklad č. 4: Přejde-li člen z jedné strany rovnice na druhou, změní se matematická operace, kterou je vázán k ostatním členům na opačnou: Z dělení na násobení!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy rovnic Shrňme si tedy na závěr ještě jednou všechny již známé ekvivalentní úpravy rovnic: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. 4. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). 5. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly).