Konstrukce trojúhelníku

Slides:



Advertisements
Podobné prezentace
Konstrukce trojúhelníku
Advertisements

Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Úhel Převody jednotek velikosti úhlů Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radomír Macháň. Dostupné z Metodického portálu.
7. ročník KONSTRUKCE TROJÚHELNÍKU VĚTA SSS. VĚTA SSS jsou-li dány pro konstrukci trojúhelníku délky tří stran, využijeme větu sss o shodnosti trojúhelníků:
MATEMATIKA – GEOMETRIE 7
Základní škola Čelákovice
Kruh, kružnice Matematika 8.ročník ZŠ
Rovnoběžník 19 Sestrojte rovnoběžník ABCD, jestliže:
Lineární funkce - příklady

Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku s využitím vět o shodnosti
Konstrukce trojúhelníku : strana, úhel, těžnice
Konstrukce trojúhelníku
Rovnoběžník 13 Sestrojte rovnoběžník ABCD, ve kterém a = 7 cm, u = 10 cm, v = 8 cm. Základem při této konstrukci bude konstrukce trojúhelníku podle věty.
Vlastnosti trojúhelníku
Poměr Co je poměr. Změna v daném poměru..
Množiny bodů dané vlastnosti
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Konstrukce trojúhelníku podle věty sus
Základní konstrukce Obdélník (známe-li délku jedné jeho strany a úhel, který s ní svírá úhlopříčka)
Známe-li délku úhlopříčky.
Poměr v základním tvaru.
Konstrukce trojúhelníku
MATEMATIKA – GEOMETRIE 7
Kvadratické nerovnice
TROJÚHELNÍK Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Lenka Pláničková. Dostupné z Metodického portálu ISSN: ,
Čtverec kružítkem Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Konstrukce trojúhelníku : strana, výška, těžnice
Množiny bodů dané vlastnosti
OZNAČENÍ MATERIÁLU: VY_32_INOVACE_98_M7
NÁZEV ŠKOLY : Základní škola Kolín V. , Mnichovická 62 AUTOR : Mgr
DIGITÁLNÍ UČEBNÍ MATERIÁL
Dvourozměrné geometrické útvary
Konstrukce trojúhelníku
Trojúhelníky Názvosloví Obvod Rozdělení Obsah Výšky v trojúhelníku
Základní konstrukce Obdélník (známe-li délku jedné jeho strany a úhlopříčky) Autor obrázků © Mgr. Radomír Macháň.
Autor obrázků © Mgr. Radomír Macháň
Konstrukce rovnoběžníku
Dvourozměrné geometrické útvary
Konstrukce trojúhelníku
Konstrukce mnohoúhelníku
Konstrukce mnohoúhelníku
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
PLANIMETRIE Zobrazení v rovině
Poměr v základním tvaru.
Výukový materiál pro 9.ročník
Kruh a kružnice Základní názvosloví Středová a osová souměrnost
Množiny bodů dané vlastnosti
Úhly v kružnici Středový a obvodový úhel (vztah mezi nimi)
Název školy: Speciální základní škola, Louny,
Shodnost trojúhelníků Konstrukce trojúhelníků
Dvourozměrné geometrické útvary
TROJÚHELNÍK Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Lenka Pláničková. Dostupné z Metodického portálu ISSN: ,
Lineární funkce a její vlastnosti
Konstrukce trojúhelníku - Ssu
Množiny bodů v rovině Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Grafy kvadratických funkcí
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Dvourozměrné geometrické útvary
ÚLOHY Z GEOMETRIE Učivo – KRUŽNICE A KRUH
Trojúhelníkové nerovnosti
ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY
Transkript prezentace:

Konstrukce trojúhelníku Známe-li 2 strany a úhel jimi sevřený. Konstrukce podle věty sus (strana, úhel, strana).

Trojúhelník a jeho vlastnosti Zopakujeme si základní vlastnosti, které nám často pomohou při pozdějších konstrukcích. Trojúhelník je rovinný geometrický útvar sestávající ze tří stran, tří vrcholů a tří vnitřních úhlů.

Trojúhelník - označování Pozor při značení vrcholů a stran trojúhelníku. Strana a proti vrcholu A, strana b proti vrcholu B, strana c proti vrcholu C. Popis vrcholů začínáme obvykle v levém dolním rohu, ale vždy popisujeme vrcholy ve směru proti pohybu hodinových ručiček.

Trojúhelník – součet vnitřních úhlů Součet vnitřních úhlů trojúhelníku je vždy 180°. 37° 73° 70° ____ 180°

Konstrukce trojúhelníku Z jakých částí se skládá naše činnost prováděná před, během a po konstrukci? 1. Je dobré zjistit, pokud to jde už ze zadání konstrukce, zda trojúhelník lze vůbec sestrojit, abychom zbytečně neztráceli čas. Jak? Např. pomocí trojúhelníkové nerovnosti, velikosti úhlů apod. 2. Načrtnout si obrázek, v němž si vyznačíme zadané údaje. Udělat si náčrt konstruované situace. 3. Rozebrat si postup, podle kterého budeme trojúhelník rýsovat. To znamená určit si, které znalosti nám při konstrukci trojúhelníku pomohou a jak. Např. vlastnosti trojúhelníku a jiných známých geometrických útvarů nebo množiny bodů dané vlastnosti. 4. Zapsat postup konstrukce, stanovený na základě provedeného rozboru. 5. Podle zapsaného postupu uskutečnit konstrukci a narýsovat zadaný trojúhelník. 6. Zapsat počet všech možných řešení zadané úlohy.

A nyní již přikročíme ke konstrukci. Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. První krok konstrukce, tj. určení, zda lze trojúhelník o zadaných hodnotách vůbec sestrojit, spočívá v tomto případě v ověření, že zadaný úhel je menší než součet všech tří vnitřních úhlů trojúhelníku, tzn. 180°. Náčrt: b = 7 cm  = 40° c = 8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. K tomu, abychom sestrojili trojúhelník, potřebujeme mít zadány 3 údaje. Tak, jak je tomu v našem případě, kdy známe dvě strany a úhel jimi sevřený. Tyto tři zadané údaje se pak zpravidla využívají v prvních třech krocích postupu konstrukce. Čím při rýsování začneme? Při konstrukcích trojúhelníků začínáme většinou (je-li zadána) stranou, a to dolní vodorovně umístěnou stranou. b= 7 cm  = 40° c = 8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. Dále budeme hledat bod C. Co o něm víme? Víme, že leží na rameni úhlu  o velikosti 40°. Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech takových bodů? Je to polopřímka AY, tj. rameno úhlu  = 40°. Y C1 C2 C3 C4 C5  = 40° A c = 8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. Co ještě víme o bodu C? Jakou druhou podmínku musí ještě splňovat? Víme, že jeho vzdálenost od bodu A je 7 cm (b = 7 cm). Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech bodů, jejichž vzdálenost od bodu A je 7 cm? Je to kružnice k se středem v bodě A a poloměrem o velikosti b, tj. 7 cm. C2 Y C1 C3 b = 7 cm C4 C5  = 40° A c = 8 cm k

Rozbor konstrukce Zapisujeme: C  AY  k Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. Kde se tedy nachází vrchol C trojúhelníku? Leží v průsečíku polopřímky AY a kružnice k, tzn. množiny všech bodů, které leží na rameni úhlu  o velikosti 40°, a množiny bodů, které mají od bodu A vzdálenost danou stranou b, tj. 7 cm (kružnice k). Jako 2. a 3. krok konstrukce tedy narýsujeme výše uváděnou polopřímku a kružnici. Y C Zapisujeme: C  AY  k  = 40° A c = 8 cm k

Postup a konstrukce: 1. AB; AB = c = 8 cm 4. C; C  AY  k 2. ;  = YAB = 40°; AY 5. Trojúhelník ABC 3. k; k(A; b = 7 cm) k C Y p A B

Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C) Konstrukci proměříme, zda odpovídá zadání, a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.

Pár příkladů k procvičení – příklad č. 1 Sestrojte trojúhelník ABC, jestliže: b = 65 mm, c = 4 cm,  = 120° (Pozor na jednotky!)

Pár příkladů k procvičení – příklad č. 2 Sestrojte trojúhelník ABC, jestliže: a = 7 cm,  = 75°, c = 5 cm

Pár příkladů k procvičení – příklad č. 3 Sestrojte trojúhelník OPQ, jestliže: o = 4 cm, |OPQ| = 100°, q = 7 cm

Konstrukce trojúhelníku podle věty sus Otevřete si na závěr ještě následující odkaz. Můžete myší měnit polohu bodů A, B, poloměr kružnice k1 (velikost strany) a sklon polopřímky AX (velikost úhlu) na uvedené konstrukci. Zkoumejte, jak se provedené změny projeví na vznikajících trojúhelnících. http://www.horackova.cz/cabri/vyklad/632.htm

Tak přesnou ruku při rýsování!