Translace (druhý krok genové exprese)

Slides:



Advertisements
Podobné prezentace
Molekulární základy dědičnosti
Advertisements

Transkripce (první krok genové exprese: Od DNA k RNA)
PROTEOSYNTEZA.
Aminokyseliny.
Translace (druhý krok genové exprese: Od RNA k proteinu)
Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám registrační číslo projektu:CZ.1.07/1.5.00/ Autor:Mgr. Daniela Hasníková.
Transkripce (první krok genové exprese)
Transkripce (první krok genové exprese)
Transkripce a translace
Translace je proces překládání informace uložené v mRNA do pořadí aminokyselin vznikající bílkoviny. Jakmile vznikne funkční mRNA, informace v ní obsažená.
Translace (druhý krok genové exprese)
Proteosyntéza RNDr. Naďa Kosová.
Aminokyseliny.
Nukleotidy a nukleové kyseliny
METABOLISMUS BÍLKOVIN II Anabolismus
Genetický kód Jakmile vznikne funkční mRNA, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím.
Translace (druhý krok genové exprese)
BÍLKOVINY (AMINOKYSELINY)
Molekulární základy dědičnosti
Didaktické testy z biochemie 6
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_239.
EXPRESE GENETICKÉ INFORMACE Transkripce
Nukleové kyseliny Opakování
NUKLEOVÉ KYSELINY (NK)
SOŠO a SOUŘ v Moravském Krumlově
Ch_056_Buněčné dýchání Ch_056_Přírodní látky_Buněčné dýchání Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace.
EU peníze středním školám Název vzdělávacího materiálu: Fotosyntéza – temnostní fáze Číslo vzdělávacího materiálu: ICT10/20 Šablona: III/2 Inovace a zkvalitnění.
©Ing. Václav Opatrný. V úvodních hodinách elektrotechniky jsou žáci seznamováni s veličinami, které popisují známý fyzikální svět, získávají představu.
Bílkoviny - aminokyseliny. Složení bílkovin -aminokyseliny – stavební kameny bílkovin Známo asi 300 druhů Proteinogenních 20, jsou řady L–α –AK Pozn.
Didaktické testy z biochemie 5
DIGITÁLNÍ UČEBNÍ MATERIÁL
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
Metabolismus bílkovin biosyntéza
Vzdělávání pro konkurenceschopnost
Peptidy Oligopeptidy Polypeptidy
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
Genetický kód – transkripce
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
PROTEINY © Biochemický ústav LF MU (H.P.)
Translace Proteosyntéza.
Přenos tepla Požár a jeho rozvoj.
Genetický kód – translace
Molekulární genetika Tok genetické informace:
Metabolismus aminokyselin.
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Monika Zemanová, PhD. Název materiálu:
Vzdělávání pro konkurenceschopnost
Úvod do studia biologie
Gymnázium, Třeboň, Na Sadech 308
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
Sekvencování DNA.
Polymerase chain reaction Polymerázová řetězová rekce
Lékařská chemie Aminokyseliny Peptidy, proteiny Primární, sekundární, terciární a kvartérní struktura proteinů.
NUKLEOVÉ KYSELINY DEFINICE DRUHY SLOŽENÍ FUNKCE REPLIKACE
Nukleové kyseliny Struktura DNA a RNA
پروتئین ها.
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
Milada Teplá, Helena Klímová
GENETICKÝ KÓD, GENY, GENOM
NUKLEOVÉ KYSELINY Dusíkaté báze Cukry Fosfát guanin adenin tymin
Předmět Molekulární a buněčná
Lékařská chemie Aminokyseliny.
NÁZEV ŠKOLY: S0Š Net Office, spol. s r.o, Orlová Lutyně
Genetický kód Jakmile vznikne funkční mRNA, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím.
C5720 Biochemie 01c-Aminokyseliny Petr Zbořil 5/6/2019.
37. Bi-2 Cytologie, molekulární biologie a genetika
37. Bi-2 Cytologie, molekulární biologie a genetika
37. Bi-2 Cytologie, molekulární biologie a genetika
NUKLEOVÉ KYSELINY ZÁKLAD ŽIVOTA Sestavila: Jana Svobodová.
Transkript prezentace:

Translace (druhý krok genové exprese) Od RNA k proteinu Prezentace Translace se zabývá překladem genetické informace zapsané v mRNA do proteinové sekvence. Milada Roštejnská Helena Klímová

Obsah Genetický kód tRNA Aminoacyl-tRNA-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace (prodlužování řetězce) Kliknutím na zvolený nadpis přejdete na příslušný snímek. Na obsah se vždy vrátíte kliknutím na animační tlačítko „Obsah“. Terminace translace Použitá literatura

Genetický kód Jakmile vznikne funkční mRNA, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím mRNA přenos z nukleotidové sekvence DNA do aminokyselinové sekvence, jsou definovaná jako GENETICKÝ KÓD. Sekvence nukleotidů mRNA je čtena po trojicích. A U G C U G A G C G A C G U A Na snímku je vytvořená animace, která znázorňuje rozdělení mRNA na kodony. U G C mRNA kodon Obsah Každá skupina tří nukletidů se nazývá kodon.

Genetický kód Dohromady Lze vytvořit 64 (43) kombinací trojic nukleotidů. Některé aminokyselině přísluší i několik tripletů, ale naopak jednomu tripletu přísluší nanejvýš jedna aminokyselina. V genetickém kódu platí konvence, že 5'-konec nukleotidové sekvence mRNA je zapisován vlevo! A U G C mRNA 3' 5' Genetický kód je téměř univerzální pro všechny organismy. Obsah

Avšak jen v jednom čtecím rámci vzniká požadovaný protein. Genetický kód V principu může být mRNA překládána ve všech třech čtecích rámcích podle toho, u kterého nukleotidu translace začne. Ala Lys Thr Val Stop kodon Val A U G C mRNA A 3' 5' Gln Arg Pro Leu Ser A U G C C mRNA Ser Gly 3' 5' Cys Leu Gln A U G C A Na snímku je vytvořená animace, která ukazuje možnost vzniknu tří různých sekvencí aminokyselin (tří různých peptidových řetězců) podle toho, od kterého nukleotidu bychom začali překládat. mRNA 3' 5' Avšak jen v jednom čtecím rámci vzniká požadovaný protein. Obsah

Obsah Terminační kodony Terminační kodony Terminační kodony   Druhý nukleotid U C A G První nukleotid UUU fenyalanin UCU serin UAU tyrosin UGU cystein Třetí nukleotid UUC fenyalanin UCC serin UAC tyrosin UGC cystein UUA leucin UCA serin UAA stop kodon UGA stop kodon UUG leucin UCG serin UAG stop kodon UGG tryptofan CUU leucin CCU prolin CAU histidin CGU arginin CUC leucin CCC prolin CAC histidin CGC arginin CUA leucin CCA prolin CAA glutamin CGA arginin CUG leucin CCG prolin CAG glutamin CGG arginin AUU isoleucin ACU threonin AAU asparagin AGU serin AUC isoleucin ACC threonin AAC asparagin AGC serin AUA isoleucin ACA threonin AAA lysin AGA arginin AUG methionin ACG threonin AAG lysin AGG arginin GUU valin GCU alanin GAU kyselina asparagová GGU glycin GUC valin GCC alanin GAC kyselina asparagová GGC glycin GUA valin GCA alanin GAA kyselina glutamová GGA glycin GUG valin GCG alanin GAG kyselina glutamová GGG glycin Terminační kodony Terminační kodony Terminační kodony Iniciační kodon Kodon AUG slouží jako tzv. iniciační kodon (signalizuje začátek translace) a také jako kodon, ke kterému je přiřazen methionin. Kodony UAA, UAG a UGA se nazývají terminační někdy též stop kodony. Terminační kodony signalizují konec kódující sekvence. Obsah Tab. 1 Genetický kód

tRNA Kodony v mRNA nerozpoznávají přímo aminokyseliny, které specifikují. Translace mRNA do proteinu závisí na tRNA (transferová RNA), která je schopna jednou částí molekuly rozpoznat a spárovat se s kodonem v mRNA a jinou částí vázat aminokyselinu. Touto částí váže příslušné aminokyseliny Touto částí se páruje s kodonem v mRNA Obsah Obr. 1. Struktura tRNA

Struktura tRNA Jedna s částí tRNA se nazývá antikodon, což jsou tři nukleotidy komplementární ke kodonu v mRNA. Další důležitou oblastí je 3'-konec (vždy končí sekvencí CCA), na který je navázána příslušná aminokyselina. Obr. 1. Struktura tRNA 3'-konec tRNA tRNA se váže antikodonem ke kodonu na mRNA. Obsah

Struktura jetelového listu Struktura tRNA Molekuly tRNA jsou všechny přibližně 80 nukleotidů dlouhé. Jejich struktura připomíná jetelový lístek, který podléhá ještě dalšímu sbalení a vytváří konečnou strukturu ve tvaru písmene L. Skutečný L-tvar tRNA Tento snímek je možné při výuce středoškolské biochemie vynechat či zařadit do semináře. Struktura jetelového listu Obr. 2. L-tvar tRNA Obsah

Aminoacyl-tRNA-synthetasa Rozpoznání a připojení správné aminokyseliny je funkcí enzymů nazývaných aminoacyl-tRNA-synthetasy. A C Aminokyselina (Tryptofan) tRNA Snímky č. 10 – 12 týkající se aminoacyl-tRNA-synthetasy je možné při výuce středoškolské biochemie vynechat či zařadit do semináře. Specifické nukleotidy v obou ramenech, antikodonovém i vázajícím aminokyselinu, umožňují rozpoznání každé tRNA vlastní aminoacyl-tRNA-synthetasou. Aminoacyl-tRNA-synthetasa Obsah Obr. 3. Aminoacyl-tRNA-synthetasa

Aminoacyl-tRNA-synthetasa Reakce katalyzovaná aminoacyl-tRNA-synthetasou vyžaduje dodání energie hydrolýzou ATP. Aminokyselina (Tryptofan) A C ATP AMP + 2Pi Vazba aminokyseliny k tRNA tRNA A C Snímky č. 10 – 12 týkající se aminoacyl-tRNA-synthetasy je možné při výuce středoškolské biochemie vynechat či zařadit do semináře. Aminoacyl-tRNA-synthetasa Obsah Obr. 3. Aminoacyl-tRNA-synthetasa

Aminoacyl-tRNA-synthetasa Při této reakci vzniká vysokoenergetická (makroergická) vazba mezi tRNA a aminokyselinou. Tato energie je později využita pro tvorbu kovalentní vazby mezi rostoucím polypeptidovým řetězcem a nově navázanou aminokyselinou. A C Aminoacyl-tRNA-synthetasa ATP AMP + 2Pi Vazba aminokyseliny k tRNA Makroergická vazba Aminokyselina (Tryptofan) U G Vazba kodonu k antikodonu Párování bází mRNA 5' 3' tRNA Snímky č. 10 – 12 týkající se aminoacyl-tRNA-synthetasy je možné při výuce středoškolské biochemie vynechat či zařadit do semináře. Obsah Obr. 3. Aminoacyl-tRNA-synthetasa

Translace probíhá na ribosomech Ribosom obsahuje čtyři vazebná místa pro molekuly RNA: jedno pro mRNA a tři pro tRNA (E-místo, A-místo, P-místo). Každý ribosom je tvořen z velké a malé podjednotky. E-místo P-místo A-místo Velká ribosomální jednotka Malá P A E Vazebné místo pro mRNA Obr. 4. Model Ribosomu Malá podjednotka zodpovídá za nasednutí tRNA na kodon mRNA. Velká podjednotka katalyzuje vznik peptidové vazby mezi aminokyselinou a polypeptidovým řetězcem. Obsah

Translace probíhá na ribosomech Obě podjednotky se spojují na molekule mRNA obvykle blízko jejího 5'-konce a zahajují syntézu proteinu. E-místo P-místo A-místo Velká ribosomální jednotka P A E Malá ribosomální jednotka Vazebné místo pro mRNA Obr. 4. Model Ribosomu Ribosom se pohybuje podél mRNA, překládá nukleotidovou sekvenci do aminokyselinové za použití tRNA a po dosyntetizování proteinu se obě jednotky opět oddělí. Obsah

Obr. 5. Iniciace translace Met Translace začíná na iniciačním kodonu AUG a pro iniciaci je třeba iniciační tRNA, která má na sobě vázaný methionin (u bakterií formyl-methionin). iniciační tRNA, která má na sobě vázaný methionin U eukaryot je iniciační tRNA s navázaným methioninem připojená k malé ribosomální jednotce za asistence několika tzv. iniciačních faktorů. Malá ribosomální podjednotka Na mRNA je červeně znázorněný iniciační kodon AUG. Na čtyřech snímcích řazených za sebou je stručně popsána a zanimována část průběhu iniciace translace. Pomocí pohyblivých tvarů je docíleno konkrétnosti a pochopení návaznosti. Malá ribosomální podjednotka se i s navázanou iniciační tRNA naváže na 5'-konec mRNA. Po rozpoznání iniciačního kodonu se připojí velká podjednotka. mRNA 5' 3' AUG Obsah Obr. 5. Iniciace translace

Obr. 5. Iniciace translace Po navázání iniciační tRNA se malá podjednotka váže na 5'-konec mRNA a začne se pohybovat podél mRNA ve směru 5' → 3' a hledat první kodon AUG, který je rozpoznán antikodonem iniciační tRNA. Met mRNA 5' 3' AUG Obsah Obr. 5. Iniciace translace

Obr. 5. Iniciace translace Po navázání iniciační tRNA se malá podjednotka váže na 5'-konec mRNA a začne se pohybovat podél mRNA ve směru 5' → 3' a hledat první kodon AUG, který je rozpoznán antikodonem iniciační tRNA. E P A Po rozpoznání iniciačního kodonu se od malé ribosomální podjednotky odpoutá několik iniciačních faktorů, což umožní připojení velké ribosomální podjednotky. Velká ribosomální podjednotka Iniciační tRNA se váže rovnou do P-místa, proto prodlužování řetězce může ihned začít navázáním druhé tRNA s aminokyselinou do A-místa. Met E P A Met mRNA 5' 3' AUG AUG AUG Obsah Obr. 5. Iniciace translace

Obr. 5. Iniciace translace Po navázání iniciační tRNA se malá podjednotka váže na 5'-konec mRNA a začne se pohybovat podél mRNA ve směru 5' → 3' a hledat první kodon AUG, který je rozpoznán antikodonem iniciační tRNA. aa2 Po rozpoznání iniciačního kodonu se od malé ribosomální podjednotky odpoutá několik iniciačních faktorů, což umožní připojení velké ribosomální podjednotky. Iniciační tRNA se váže rovnou do P-místa, proto prodlužování řetězce může ihned začít navázáním druhé tRNA s aminokyselinou do A-místa. E P A Met AUG mRNA 5' 3' Obsah Obr. 5. Iniciace translace

Obr. 5. Iniciace translace V dalším kroku dochází ke vzniku peptidové vazby mezi methioninem a přicházející aminokyselinou (aa2). Met aa2 E P A 5' 3' AUG mRNA Obsah Obr. 5. Iniciace translace

Iniciace translace V dalším kroku dochází ke vzniku peptidové vazby mezi methioninem a přicházející aminokyselinou (aa2). Ribosom se posune o 3 nukleotidy podél mRNA. tRNA bez navázané aminokyseliny se uvolní z E-místa a tRNA z A-místa se přenese do P-místa. Met aa2 E P A 5' 3' AUG mRNA Obsah Obr. 5. Iniciace translace

Elongace translace (prodlužování řetězce) Při proteosyntéze je neustále opakován tříkrokový cyklus: V prvním kroku je aminoacyl-tRNA navázána do A-místa. aa4 NH2 aa1 Na třech snímcích řazených za sebou je zanimován pomocí pohyblivých objektů průběh elongace translace, během které dochází k prodlužování peptidového řetězce. aa2 aa3 E P A 5' 3' mRNA Obsah Obr. 6. Elongace translace

Elongace translace (prodlužování řetězce) Při proteosyntéze je neustále opakován tříkrokový cyklus: V prvním kroku je aminoacyl-tRNA navázána do A-místa. Ve druhém kroku dochází ke vzniku peptidové vazby mezi prodlužujícím se řetězcem a přicházející aminokyselinou. aa3 aa2 aa1 NH2 aa4 E P A 5' 3' mRNA Obsah Obr. 6. Elongace translace

Elongace translace (prodlužování řetězce) Při proteosyntéze je neustále opakován tříkrokový cyklus: V prvním kroku je aminoacyl-tRNA navázána do A-místa. Ve druhém kroku dochází ke vzniku peptidové vazby mezi prodlužujícím se řetězcem a přicházející aminokyselinou. Ve třetím kroku se ribosom posune o 3 nukleotidy podél mRNA. tRNA bez navázané aminokyseliny se uvolní z E-místa a tRNA z A-místa se přenese do P-místa. aa3 aa2 aa1 NH2 aa4 E P A 5' 3' mRNA Obsah Obr. 6. Elongace translace

Elongace translace (prodlužování řetězce) Vazba tRNA s připojenou aminokyselinou do volného A-místa (1. krok elongace). Vznik peptidové vazby (2. krok elongace). Posun chromosomu a uvolnění volné tRNA (3. krok elongace). aa5 aa3 aa2 aa1 NH2 aa4 aa5 E P A 5' 3' mRNA Obsah Obr. 6. Elongace translace

Elongace translace (prodlužování řetězce) 5' 3' mRNA aa4 aa3 aa2 aa1 NH2 aa5 tRNA Rostoucí peptidový řetězec Posun o tři nukleotidy Elongace translace (prodlužování řetězce) mRNA je překládána ve směru 5' → 3' a nejprve vzniká N-konec proteinu. Celý cyklus všech tří kroků je opakován při každém předávání nové aminokyseliny do polypeptidového řetězce, dokud ribosom nenarazí na stop-kodon. Polypeptidový řetězec roste směrem od N-konce k C-konci. Obsah Obr. 7. Elongace translace (Schéma)

Terminace translace Konec proteinu je signalizován přítomností jednoho ze tří terminačních neboli stop kodonů (UAA, UAG nebo UGA). Těmto kodonům není přiřazená žádná aminokyselina. Místo tRNA se na stop kodon v A-místě vážou tzv. terminační faktory, které mění aktivitu peptidyltransferasy tak, že místo aminokyseliny použije molekulu vody pro uvolnění karboxylového konce hotového polypeptidového řetězce z tRNA v P-místě. Uvolňovací faktor NH2 Na třech snímcích řazených za sebou je pomocí pohyblivých objektů zanimován průběh terminace translace. K tomuto procesu dochází, jakmile se na mRNA objeví terminační kodon (na obrázku je červeně znázorněný terminační kodon UAA). aa1 aa3 aa2 E P A aa4 aa5 5' 3' UAA mRNA Obsah Obr. 8. Terminace translace

Terminace translace Konec proteinu je signalizován přítomností jednoho ze tří terminačních neboli stop kodonů (UAA, UAG nebo UGA). Těmto kodonům není přiřazená žádná aminokyselina. Místo tRNA se na stop kodon v A-místě vážou tzv. terminační faktory, které mění aktivitu peptidyltransferasy tak, že místo aminokyseliny použije molekulu vody pro uvolnění karboxylového konce hotového polypeptidového řetězce z tRNA v P-místě. H2O NH2 aa5 aa4 aa3 aa2 aa1 NH2 aa5 aa4 aa3 aa2 aa1 COOH Protein se uvolňuje do cytoplasmy. E P A 5' 3' mRNA UAA Obsah Obr. 8. Terminace translace

Obr. 8. Terminace translace Po skončení proteosyntézy je mRNA odpojena od ribosomu a dojde k disociaci obou podjednotek ribosomu, které se mohou navázat na jinou molekulu mRNA a začít novou transkripci. E P A 5' 3' UAA mRNA Obsah Obr. 8. Terminace translace

Obsah E P A mRNA E P A E P A 5' 3' 5' 3' mRNA 5' 3' Obr. 9. Iniciace, aa AUG mRNA Malá ribosomální podjednotka s navázanými iniciačními faktory Vazba na mRNA Met Velká ribosomální podjednotka Aminoacyl-tRNA Vznik peptidové vazby E P A 5' 3' mRNA aa4 aa3 aa2 aa1 NH2 aa5 tRNA Rostoucí peptidový řetězec Posun o tři nukleotidy E P A aa5 aa4 aa3 aa2 aa1 NH2 5' 3' UAA COOH Uvolňovací faktor H2O Obr. 9. Iniciace, elongace, a terminace translace Obsah

Použitá literatura Obsah [1] ALBERTS, B. a kol. Základy buněčné biologie. Ústí nad Labem: Espero Publishing, 1997. [2] NEČAS, O. a kol. Obecná biologie pro lékařské fakulty. Jinočany: Nakladateství H&H, 2000. [3] KUBIŠTA, V. Buněčné základy životních dějů. Praha: Scientia, 1998. Obsah