Pohybový systém MUDr.Kateřina Kapounková

Slides:



Advertisements
Podobné prezentace
Energetické krytí. Energetické krytí 1) Systém ATP - CP Rychlostní zatížení s dobou trvání výkonu přibližně 15 s využívá jako hlavní energetický.
Advertisements

FYZIOLOGIE ZÁTĚŽE.
FYZIOLOGIE ZÁTĚŽE.
Vylučovací soustava Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
Fotosyntéza. Co to je? o Z řeckého fótos – „světlo“ a synthesis –„skládání“ o Biochemický proces, probíhá v chloroplastech (chlorofyl) o Mění přijatou.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Lydie Klementová. Dostupné z Metodického portálu ISSN:
Metabolismus sacharidů. hlavní složkou výživy –obilniny, rýže, kukuřice, brambory... zdroj energie stavební funkce (nukleotidy, koenzymy,glykolipidy…)
SOUSTAVA SVALOVÁ Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
LIPIDY (lipos = tuk) Charakteristika  látky rostlinného i živočišného původu  deriváty vyšších mastných kyselin a alkoholu  hydrofobní charakter ( odpuzují.
Ch_056_Buněčné dýchání Ch_056_Přírodní látky_Buněčné dýchání Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace.
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor:Mgr. Šárka Svobodová Název materiálu:
Genetických pojmů EU peníze středním školám Název vzdělávacího materiálu: Eukaryotická buňka II Číslo vzdělávacího materiálu: ICT5/4 Šablona: III/2 Inovace.
PŘÍRODOPIS 8. ROČNÍK VY_52_INOVACE_21_01_složky potravy.
Zvýšená hodnota metabolismu v zátěži vyžaduje zvýšený přísun kyslíku do tkání pro zajištění oxidativní glykolýzy (štěpení cukrů za přístupu kyslíku- od.
Trávení. -Trávení, někdy také zažívání, je metabolický biochemický proces, jehož cílem je získání živin z potravy. -V rámci trávení se potrava rozkládá.
PROTEINY-BÍLKOVINY LUCIE VÁŇOVÁ. ZÁKLADNÍ STAVEBNÍ JEDNOTKA.
Všechna neocitovaná díla jsou dílem autora.
Název školy příspěvková organizace Autor Ing. Marie Varadyová Datum:
Pekařské a cukrářské výrobky a těsta
VY_32_INOVACE_461 Základní škola Luhačovice, příspěvková organizace
Fylogeneze pohybu živočichů- test
Základy automatického řízení 1
Instruktor lyžování II.třídy (150) jen pro vnitřní potřebu
BIOLOGIE ČLOVĚKA TRÁVICÍ SOUSTAVA
Výživa a hygiena potravin
Pohybová soustava.
Třída: Savci Autor: Zuzana Veselíková Vytvořeno: červen 2011
Soustava pohybová – SVALOVÁ
Mechanické vlastnosti kosterního svalu
Metabolické přeměny sacharidů – glykolýza
3.přednáška z anatomie pro SM
NÁZEV ŠKOLY: ZŠ Dolní Benešov, příspěvková organizace
Číslo projektu MŠMT: Číslo materiálu: Název školy: Ročník:
Β-oxidace VMK.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Glykolýza Glukoneogeneze
Metabolické děje I. – buněčné dýchání
Metabolismus a energetické krytí při sportu
Přednáška 1 Úvod do histologie ________________ Tkáně.
Bazální metabolismus Výpočet denního energetického výdeje
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Lumír.
AUTOR: Mgr. Alena Bartoňková
VY_32_INOVACE_07_PR_KOŽNÍ SOUSTAVA
Rychlostní schopnosti (speed, Schnelligkeit)
Tělesný, funkční a psychický vývoj dětí a mládeže
CHEMIE - Bílkoviny SŠHS Kroměříž Číslo projektu CZ.1.07/1.5.00/
PRÁCE Z TERÉNU – sportovní gymnastika Veronika Krupková
zpracovaný v rámci projektu
Člověk-kostra Autor: Mgr. Iveta Váňová VY_32_INOVACE_12_Člověk-kostra
Autor: PaedDr. Hana Hrubcová Název: VY_32_INOVACE_3B_12_Svaly
Tento materiál byl vytvořen rámci projektu EU peníze školám
Základní charakteristiky kostí
OP VK Využívání ICT Sada č. 3 - Př - 8
BUDOVACÍ TKÁNĚ.
POHYBOVÁ SOUSTAVA I..
Název školy: Dětský domov, Základní škola praktická, Praktická škola a Školní jídelna, Dlažkovice 1, příspěvková organizace Třebívlice Autor: PhDr.
Fyziologie sportovních disciplín- silové sporty
Soustava močová Funkce: Tvoří a vylučuje z těla moč.
Metabolismus buňky Projekt OBZORY
Vytrvalostní schopnosti (endurance abilities, Ausdauerfähigkeit)
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Elektrické vlastnosti buňky
Elektrické vlastnosti buňky
Tento materiál byl vytvořen rámci projektu EU peníze školám
A B C c d b a e g h i f 1.1 Různé typy buněk
Fyziologie sportovních disciplín
C5720 Biochemie 03- Fibrilární bílkovin Petr Zbořil 5/2/2019.
Biologie.
Kondiční PŘÍPRAVA LAKROS.
KOSTRA.
Transkript prezentace:

Pohybový systém MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výživa ve sportu (CZ.107/2.2.00/15.0209)

Pohybový systém Pojivové tkáně : vazivo, chrupavka, kost Svalová tkáň a Pojivové tkáně : vazivo, chrupavka, kost Složené z buněk + vláken + mezibuněčné hmoty + …

Vazivové tkáně Vazivo: buňky vaziva(fibrocyty, tukové buňky) vlákny (kolagen, elastin, retikulární) a mezibuněčná hmota Tuhé vazivo: vazy, šlachy Řídké vazivo: mezitkáňové prostory Elastické vazivo: vazy páteře, žeber Tukové vazivo: podkoží Lymfoidní vazivo: mízní uzliny

Chrupavka vlákna (kolagen, elastin) mezibuněčná hmota Chrupavka: buňky- chondrocyty vlákna (kolagen, elastin) mezibuněčná hmota hyalinní – tvrdá, porcelánově bílá, křehká, obs.chondrocyty+beztvarou hmotu+jemné maskované kolagenní vlákna. - na povrchu kloubů a v dýchacích cestách elastická – pružná, ohebná, žlutavá, převládají elastická vlákna - nos, boltec vazivová – mechanicky odolná na tlak a tah, matně bílá, - převládají silná kolagenní vlákna – meziobratlové ploténky, meniskus

Kost buňky - osteocyty vlákna -kolagenní jako pletivo či lamely Pevná pojivová tkáň, s mineralizovanou základní hmotou – minerální látky činí až 65% objemu kosti !!! buňky - osteocyty vlákna -kolagenní jako pletivo či lamely kolem vyživovací cévy = vzniká osteon =zákl. funkční jednotka kosti - elastická … minerály (Ca, P, Mg, Na, F..) Kostní dřeň – erytropoetická tkáň

Sval vzrušivá a stažlivá tkáň,reaguje na elektrickou stimulaci hladký sval – kontrahuje se svalová buňka (střevo, průdušky, cévy..) v cytoplasmě buněk jsou smrštění schopná vlákna – myofibrily příčně pruhovaný sval – kontrahuje se svalové vlákno - myofibrily - kosterní sval - biceps, záda… - srdeční sval Sval.vlákno ( tvořeno) : myofibrily ( několik set) sarkoplazma jádro mitochondrie+glykogen …. vše obalené membránou sarkolemou. Myofibrily jsou to 2 bílkoviny schopné kontrakce, aktin a myosin, které se při kontrakci do sebe zasouvají…

počet svalových vláken inervovaných jedním motoneuronem MOTORICKÁ JEDNOTKA počet svalových vláken inervovaných jedním motoneuronem MOTORICKÁ PLOTÉNKA (synapse) přenos vzruchu motoneuronu na svalové vlákno

Svalová inervace Inervace svalu je zajištěna několika druhy nervových vláken Silná motorická vlákna typu alfa končí na nervosvalových ploténkách a vzruchy jimi vedené vedou ke stahu extrafuzálních vláken svalu Gama vlákna jsou zakončena u motorických plotének intrafuzálních vláken

Příčně pruhovaný sval Myofibrily 1-2 um, stovky -tisíce v každém sval.vláknu jsou složeny z aktinu a myosinu – v elektronovém mikroskopu dávají pruhovaný vzhled Základní jednotkou svalu je svalové vlákno dlouhé několik cm

Vlastnosti EXCITABILITA - schopnost svalu odpovědět na stimul vytvořením a vedením akčního potenciálu KONTRAKTILITA - schopnost svalu se stahovat a vyvíjet napětí za současného výdeje energie EXTENSIBILITA - schopnost svalu být natažen ELASTICITA - schopnost svalu se vrátit do klidové délky buď po natažení nebo zkrácení

Reaktivní změny = svalová kontrakce Při svalovém stahu dochází ke štěpení ATP pomocí myozinove ATPázy Pro excitaci kontrakce -uvolnění iontů vápníku ze sarkoplazmatického retikula k myofilametům-Ca-aktomyozinový komplex (můstek), což je doprovázeno štěpením ATP na ADP V procesu relaxace svalu, tj. zániku můstků dochází naopak k reabsorpci vápníku pomocí Ca2+ - pumpy do sarkoplazmatického retikula, přičemž tento proces je podmíněn resyntézou ATP

spojení aktin-myozin klouzavý pohyb odpojení hlavic narovnání hlavic

svaly (aktin-myozin) membrána svalového vlákna a vazivo (fascie) šlachy

Biochemie svalové kontrakce Z hlediska biochemie svalové kontrakce je energie potřebná k funkční činnosti kosterního svalu pro resyntézu ATP z ADP poskytována typy reakčních procesů: 1) tvorbou ATP ze 2 molekul ADP 2) tvorbou ATP z CP 3) tvorbou ATP při anaerobní glykolýze glycidů za vzniku kys. mléčné 4) tvorbou ATP v aerobním cyklu kys. Citronové, kdy konečnými produkty jsou voda a CO2

METABOLISMUS SVALU - restituce ATP MYOKINÁZOVÁ REAKCE ADP + ADP ATP + AMP LOHMANNOVA REAKCE CrP + ADP Cr + ATP GLYKOLYTICKÁ FOSFORYLACE (anaerobní) Při odbourávání glukózy bez spotřeby kyslíku je uvolněna energie glukóza laktát + 2 ATP OXIDAČNÍ FOSFORYLACE (aerobní) Při odbourávání látek (glukóza, laktát, volné mastné kys., aminokyseliny) za přítomnosti kyslíku je uvolněna energie glukóza + 6 O2 6 CO2 + 6 H2O + 38 ATP

Alaktátový neoxidativní způsob 2 ADP ATP + AMP ATP ADP + P + energie pro sval. stah CP + ADP C + ATP

Laktátový neoxidativní způsob G + 2P + 2ADP 2 mol. kys.mléčné + 2ATP G….glykogen metabolická acidóza hladina LA v krvi

Oxidativní způsob G + 38P + 38ADP + 6O2 6CO2 + 44H2O + 38ATP nedochází k tvorbě laktátu G + 38P + 38ADP + 6O2 6CO2 + 44H2O + 38ATP MK + 130P + 130ADP + 23O2 16CO2 + 146H2O + 130ATP

amino- kyseliny Bílkoviny Citrátový glukoza cyklus Cukry glycerol, Laktát Snížení pH Transportní systém O2 laktát amino- kyseliny Bílkoviny NH3 glukoza Citrátový cyklus O2 Cukry Acetyl CoA pyruvát pyruvát H2O 38 ATP glycerol, volné mastné kyseliny Tuky CO2 glukóza laktát + 2 ATP

ENERGETICKÉ ZÁSOBY SVALU Tvorba ATP Kosterní svaly 10 kJ 30 kJ 6 600 kJ 600 kJ 6 000 kJ 11 000 kJ 160 000 kJ ATP CrP Glykogen -anaerobně -aerobně TAG proteiny 4,5 mol/min 3,0 mol/min 2,0 mol/min 0,75 mol/min 0,4 mol/min 0,01 mol/min Krev glukóza NEMK TAG 300 kJ 15 kJ 150 kJ 0,75 mol/min 0,4 mol/min 0,1 mol/min Játra Tuková tkáň glykogen lipidy 1 500 kJ 560 000 kJ 0,75 mol/min 0,40 mol/min

TYPY SVALOVÝCH VLÁKEN červené vlákno červené vlákno bílé vlákno typ I. rezistentní k unavitelnosti typ I. červené vlákno pomalé oxidativní vlákno (SO) rezistentní k unavitelnosti typ II. A rychlé oxidativně-glykolytické vlákno (FOG) červené vlákno typ II. B rychlé glykolytické vlákno (FG) unavitelné bílé vlákno

nízká

TYPOLOGIE SVALOVÝCH VLÁKEN rezistentní k unavitelnosti typ I. červené vlákno pomalé oxidativní vlákno vysoký obsah myoglobinu bohatá na mitochondrie obsahují méně glykogenu obsahují více triacylglycerolů bohatá kapilární síť trvání kontrakce po impulsu až 100 ms VYTRVALOSTNÍ ZÁTĚŽ

TYPOLOGIE SVALOVÝCH VLÁKEN typ II. B rychlé glykolytické vlákno unavitelné bílé vlákno nízký obsah myoglobinu nižší počet mitochondrií bohatá na glykogen nízký obsah triacylglycerolů řidší kapilární síť trvaní kontrakce po impulsu 10 - 40 ms RYCHLOSTNÍ ZÁTĚŽ rychlé silové kontrakce nedlouhého trvání

Svalový metabolismus při zatížení Využívaní zdrojů energie ve svalu je závislé na intenzitě a době trvání výkonu Při vysoce intenzivní pracovní činnosti -především rychlé motorické jednotky s vysokým obsahem ATP a CP Při práci vytrvalostního charakteru jsou do činnosti zapojovány převážně pomalé motorické jednotky

DRUHY SVALOVÉ ČINNOSTI ČINNOST STATICKÁ převažuje svalová síla ve výdrži s minimální změnou svalové délky ČINNOST DYNAMICKÁ rytmické střídání kontrakce a relaxace se změnou svalové délky, s různou účasti svalového působení

DRUHY DYNAMICKÉ SVALOVÉ ČINNOSTI ČINNOST SILOVÁ pohybová činnost se zdůrazněnými silovými nároky, kdy trvání kontrakce je delší než trvání relaxace ČINNOST RYCHLOSTNÍ pohybová činnost s velmi rychlým střídáním kontrakcí a relaxací ČINNOST OBRATNOSTNÍ pohybová činnost, kde je důležitá jemná koordinace svalové činnosti ČINNOST VYTRVALOSTNÍ pohybová činnost, kde se klade důraz na dlouhodobou svalovou činnost

Pásma energetické krytí Anaerobní alaktátové Anaerobní laktátové Aerobní alaktátové

STATICKÁ SVALOVÁ ČINNOST převážně oxidační fosforylace kontrakce malé síly do 15% max. kontrakční síly kontrakce střední síly 15% - 60% max. kontrakční síly oxidační fosforylace glykolytická fosforylace pouze glykolytická fosforylace kontrakce velké síly nad 60% max. kontrakční síly

Adaptační změny Ve svalech trénovaných jedinců ( typ zatížení) 1. strukturální změny ( mitochondrie, hypertrofie, vaskularizace) 2. metabolická reakce při zatížení ( glykogen, enzymy,..)

ADAPTACE NA ZÁTĚŽ ČINNOST SILOVÁ hypertrofie vláken II B, aktivita myokinázy ČINNOST RYCHLOSTNÍ obsahu a utilizace ATP a CP, hypertrofie vláken II B ČINNOST RYCHLOSTNĚ–VYTRVALOSTNÍ (2min) aktivita glykolytického systému, utilizace glykogenu, pufrovací kapacity ČINNOST VYTRVALOSTNÍ mitochondrií, aktivita enzymů dýchacího řetězce, kapilarizace, hypertrofie I, možná konverze z II I(?), hladiny svalového glykogenu o 100%, aktivita lipázy

Kost Fyzické zatěžování organismu podporuje růst kostí Kost je po celou dobu života metabolicky aktivní (zvyšuje se obsah minerálních látek – Ca) Trénink zvyšuje (i snižuje) hmotnost kostí (vlivem působení parathormonu) Dlouhodobě neúměrně vysoká intenzita tréninkové zátěže produkuje pokles kostní denzity (osteoporózu) Úměrná intenzita produkuje vyšší denzitu diafýz Poznámka: Intenzivní zatížení mladého rostoucího organismu však vede v některých případech snad vlivem androgenů z nadledvinek k omezení růstu dlouhých kostí do délky předčasnou osifikací chrupavčitých růstových zón mezi hlavicemi a tělem kostí. Kosti jsou potom širší a kratší

Šlachy, vazy, klouby Zvyšuje se obsah kolagenu a aktivita enzymů Pojivová tkáň je dosti adaptivní Zatížení mění pozitivně tj. posiluje kosti, šlachy i vazy