Množina bodů roviny daných vlastností

Slides:



Advertisements
Podobné prezentace
Thaletova kružnice Množina bodů roviny daných vlastností Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu.
Advertisements

Anotace: Žák zjišťuje vlastnosti Thaletovy kružnice a její využití.
Goniometrické funkce Kosinus Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
OBDÉLNÍK 1. ZÁKLADNÍ VLASTNOSTI OBDÉLNÍKU 2. OBVOD A OBSAH OBDÉLNÍKU – SLOVNÍ ÚLOHY   Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je.
Čtyřúhelníky Druhy čtyřúhelníků Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Lichoběžníky a jejich vlastnosti Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jaroslava Holečková. Dostupné z Metodického portálu ISSN: Provozuje.
Druháci a matematika 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je PaedDr. Marie Janků. Dostupné z Metodického portálu
KOLEKCE ÚLOH PRO MATEMATICKÝ SEMINÁŘ kružnice opsaná trojúhelníku
Kolmé hranoly, jejich objem a povrch
PYTHAGOROVA VĚTA Věta k ní obrácená
Kolmé hranoly, jejich objem a povrch
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Převody – jednotky délky
Konstrukce trojúhelníku
Střední příčky trojúhelníku
Provozováno Výzkumným ústavem pedagogickým v Praze.
Podobnost trojúhelníků
Množiny bodů dané vlastnosti
PYTHAGOROVA VĚTA Věta k ní obrácená
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Části kruhu Matematika 8 – I.díl
GEOMETRICKÉ TVARY v rozsahu učiva 1. stupně ZŠ
Skloňování vzorů podstatných jmen rodu středního
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Soustava souřadnic Oxy
Množina bodů roviny daných vlastností
TROJÚHELNÍK Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Lenka Pláničková. Dostupné z Metodického portálu ISSN: ,
Čtverec kružítkem Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Konstrukce trojúhelníku : strana, výška, těžnice
Pravidla pro počítání s mocninami
Úvod do geometrie Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Hyperoskulační kružnice elipsy
PROVĚRKY Převody jednotek délky - 2.část
Převody délky MATEMATIKA
7 PYTHAGOROVA VĚTA.
Konstrukce mnohoúhelníku
Délka kružnice, obvod kruhu
Shodnost rovinných útvarů Shodnost trojúhelníků
* Těžnice trojúhelníku Matematika – 6. ročník *
Provozováno Výzkumným ústavem pedagogickým v Praze.
Určení severního pólu cívky s proudem pomocí pravidla pravé ruky
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Vzájemná poloha dvou kružnic
Vyberte správně definiční obor funkce podle obrázku
Výukový materiál pro 9.ročník
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
TROJÚHELNÍK Druhy trojúhelníků
Kruh a kružnice Základní názvosloví Středová a osová souměrnost
Množina bodů roviny daných vlastností
Množiny bodů dané vlastnosti
TROJÚHELNÍK Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Lenka Pláničková. Dostupné z Metodického portálu ISSN: ,
Převody – jednotky délky
Konstrukce trojúhelníku podle věty sus
Vzájemná poloha kružnice a přímky
Převody jednotek hmotnosti – 2. část
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Konstrukce trojúhelníku - Ssu
MATEMATICKÝ KUFR Téma: Geometrie (6.–9.ročník)
Vzájemná poloha kružnice a přímky
Množiny bodů v rovině Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Definiční obor funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Kvadratická rovnice Vlastnosti kořenů kvadratické rovnice
Převody jednotek obsahu - 2.část
Vyberte správně definiční obor funkce podle obrázku
Definiční obor funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku podle věty sus
Transkript prezentace:

Množina bodů roviny daných vlastností Thaletova kružnice Množina bodů roviny daných vlastností Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Úloha | AX1B| = 90° Sestrojte úhly AX1B, AX2B, AX3B, … a změřte jejich velikost. | AX3B| = 90° Na kružnici k zvolte několik bodů X1, X2, X3, …, různých od bodů A, B. Narýsujte kružnici k(S; r) a sestrojte její průměr AB. | AX2B| = 90° | AX4B| = 90° Narýsujte kružnici k(S; r) a sestrojte její průměr AB. Na kružnici k zvolte několik bodů X1, X2, X3, … různých od bodů A, B. Sestrojte úhly AX1B, AX2B, AX3B, … a změřte jejich velikost. X4 X1 A B S X2 k X3

Důkaz α β r α β A B r r S k X kružnice k(S;r) V  AXB platí: průměr AB α + β + β + α = 180° α β X  k; X ≠ A, B →XS r Takže:  AXS a  BXS α β A B α + β = 90° = rovnoramenné  s rameny délek r r r S  úhel AXB je pravý α, β - úhly při základnách  AXS a  BXS k

Thaletova věta Vrcholy pravých úhlů AXB jsou body X kružnice k s průměrem AB (s výjimkou bodů A, B) a žádné jiné.

Thaletova kružnice Množinou vrcholů pravých úhlů všech pravoúhlých trojúhelníků s přeponou AB je kružnice k s průměrem AB s výjimkou bodů A, B. Kružnici k nazýváme Thaletova kružnice.

Tháles z Milétu ? 624 – 547 př. n. l. řecký filosof, matematik, vědec a inženýr předpověděl zatmění Slunce, které nastalo 28. května roku 585 př. n. l. pomocí svých geometrických objevů určil např. výšku pyramidy podle délky jejího stínu nebo vzdálenost lodí od pobřeží http://cs.wikipedia.org/wiki/Soubor:Thales.jpg