Goniometrické funkce funkce kosinus

Slides:



Advertisements
Podobné prezentace
V PRAVOÚHLÉM TROJÚHELNÍKU
Advertisements

1. ročník S O U GONIOMETRICKÉ FUNKCE PDF Poznámky pro žáky se SPU
POZNÁMKY ve formátu PDF
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus ostrého úhlu
Výukový materiál byl zpracován v rámci projektu
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce Autor © Mgr. Radomír Macháň
SINUS KOSINUS. VLASTNOSTI GONIOMETRICKÝCH FUNKCÍ  Funkce sinus a kosinus patří mezi goniometrické funkce.  Goniometrické funkce tvoří skupina šesti.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
60. 1 Goniometrické funkce a jejich vlastnosti III.
PRAVOÚHLÝ TROJÚHELNÍK
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
IDENTIFIKÁTOR MATERIÁLU: EU
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
AnotacePrezentace, která se zabývá odvěsnami v pravoúhlém trojúhelníku. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci poznají dané odvěsny.
Goniometrické funkce funkce tangens a kotangens
Goniometrické funkce Kotangens ostrého úhlu
Pravoúhlý trojúhelník
AnotacePrezentace, která se zabývá celkovým opakováním goniometrických funkcí. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci opakují goniometrické.
Goniometrické funkce funkce sinus
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
V PRAVOÚHLÉM TROJÚHELNÍKU
IDENTIFIKÁTOR MATERIÁLU: EU
IDENTIFIKÁTOR MATERIÁLU: EU
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Vzorce pro goniometrické funkce v pravoúhlém trojúhelníku
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jaroslava Holečková. Dostupné z Metodického portálu ISSN: Provozuje.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Pythagorova věta Pythagoras 570 př.n.l. – 510 př.n.l.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín VY_32_INOVACE_M_09 Goniometrické funkce - kosinus Zpracovala: Mgr. Květoslava Štikovcová.
2.4 Funkce sinus a kosinus na JK 2 GONIOMETRIE Mgr. Petra Toboříková, Ph.D. VOŠZ a SZŠ Hradec Králové, Komenského 234.
Goniometrie jako oblast matematiky (3). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola.
Tangens a kotangens v pravoúhlém trojúhelníku (5).
2.10 Goniometrické funkce ostrého úhlu ve slovních úlohách 2 GONIOMETRIE Mgr. Petra Toboříková, Ph.D. VOŠZ a SZŠ Hradec Králové, Komenského 234.
Funkce sinus (8). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
GONIOMETRICKÁ FUNKCE TANGENS Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_02_B_16_Goniometrická funkce.
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
PRAVOÚHLÉHO TROJÚHELNÍKU
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
IDENTIFIKÁTOR MATERIÁLU: EU
SINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Matematika – 7.ročník VY_32_INOVACE_
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Goniometrické funkce Autor © Mgr. Radomír Macháň
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
COSINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce v pravoúhlém trojúhelníku
Matematický milionář Foto: autor
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
EUKLIDOVA VĚTA O VÝŠCE:
Transkript prezentace:

Goniometrické funkce funkce kosinus

Pravoúhlý trojúhelník Nejdelší strana c se nazývá přepona Strany a,b svírající pravý úhel jsou odvěsny

Pravoúhlý trojúhelník Vzhledem k úhlu α se strana b nazývá přilehlá odvěsna

Pravoúhlý trojúhelník Velikosti úhlu α je přiřazeno číslo, které je poměrem přilehlé odvěsny b ku přeponě c. Tato funkce se nazývá kosinus úhlu α, zkráceně cos α

Pravoúhlý trojúhelník Kosinus α je poměr protilehlé odvěsny b ku přeponě c

Pravoúhlý trojúhelník Vzhledem k úhlu β se strana a nazývá přilehlá odvěsna

Pravoúhlý trojúhelník Kosinus β je poměr přilehlé odvěsny a ku přeponě c

K určování hodnot funkce kosinus používáme tabulky nebo kalkulačku