Matematika pro ekonomy

Slides:



Advertisements
Podobné prezentace
Základy infinitezimálního počtu
Advertisements

Základy infinitezimálního počtu
Přednáška 10 Určitý integrál
Výukový materiál zpracovaný v rámci projektu Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:* III/2Sada:* I. Ověření ve výuce: oktávaDatum:
Výukový materiál zpracovaný v rámci projektu Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:* III/2Sada:* I. Ověření ve výuce: oktávaDatum:
Derivace složené funkce Základy infinitezimálního počtu Dostupné z Metodického portálu ISSN: , financovaného z ESF.
Základy infinitezimálního počtu
Neurčitý integrál. Příklad.
ROVNOMĚRNÝ POHYB.
Základy infinitezimálního počtu
Základy infinitezimálního počtu
Základy infinitezimálního počtu
DERIVACE FUNKCE Autor: RNDr. Věra Freiová
PRŮBĚH FUNKCE Autor: RNDr. Věra Freiová
LIMITA FUNKCE Autor: RNDr. Věra Freiová
DERIVACE A MONOTÓNNOST, LOKÁLNÍ EXTRÉMY Autor: RNDr. Věra Freiová Gymnázium K. V. Raise, Hlinsko, Adámkova 55.
DERIVACE - SOUČINU a PODÍLU FUNKCÍ - SLOŽENÉ FUNKCE
Math Studio, Analyza, GraphDrawer, Graph
BRVKA Georg F.B. Riemann ( ). BRVKA Známe různé inverzní procesy (i matematické), integrování je inverzní proces k derivování. Definice: I je.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _738 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _737 Výukový materiál zpracován v rámci projektu EU peníze školám.
Mocniny, odmocniny, úpravy algebraických výrazů
Neurčitý integrál. Příklad. Na ploše 10 m x 10 m se vysazuje stejný typ rostlin ve 2 barvách. Obě barvy jsou odděleny křivkou y = x ( 1 – 0.1x ). Kolik.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _721 Výukový materiál zpracován v rámci projektu EU peníze školám.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _736 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _739 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _734 Výukový materiál zpracován v rámci projektu EU peníze školám.
Integrály v kinematice Autor: RNDr.Zdeňka Strouhalová Fyzika, seminář z fyziky Inovace výuky na Gymnáziu Otrokovice formou DUMů CZ.1.07/1.5.00/
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _722 Výukový materiál zpracován v rámci projektu EU peníze školám.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Exponenciální a logaritmické funkce a rovnice
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _735 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _740 Výukový materiál zpracován v rámci projektu EU peníze školám.
Funkce více proměnných.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _732 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _728 Výukový materiál zpracován v rámci projektu EU peníze školám.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _726 Výukový materiál zpracován v rámci projektu EU peníze školám.
NEURČITÝ INTEGRÁL Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
Repetitorium z matematiky Podzim 2012 Ivana Medková
MIROSLAV KUČERA Úvodní informace Matematika B 2
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
8. Parametrické vyjádření a obecná rovnice přímky a roviny
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _724 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _729 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _725 Výukový materiál zpracován v rámci projektu EU peníze školám.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Operace s množinami Matematika Autor: Mgr. Karla Bumbálková
Repetitorium z matematiky Podzim 2012 Ivana Medková
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Určitý integrál Základy infinitezimálního počtu. Určitý integrál a=x 0 x1x1 x2x2 x3x3 x4x4 x 5 = b m5m5 m3m3 m2m2 m1m1 m4=m4=
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_03 Název materiáluVlastní.
Funkce. Funkce - definice Funkce je zobrazení, které každému číslu z podmnožiny množiny reálných čísel R přiřazuje právě jedno reálné číslo. Funkci značíme.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Repetitorium z matematiky Podzim 2012 Ivana Medková
Matematika pro ekonomy Jaro 2012 Ivana Vaculová
Repetitorium z matematiky Podzim 2011 Ivana Vaculová
3. Diferenciální počet funkcí reálné proměnné
1 Lineární (vektorová) algebra
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Exponenciální a logaritmické funkce a rovnice
Lineární funkce a její vlastnosti
Transkript prezentace:

Matematika pro ekonomy 4. Integrální počet Matematika pro ekonomy Jaro 2012 Ivana Vaculová

Osnova: 1 Neurčitý integrál 2 Geometrická interpretace 3 Základní vzorce pro integrování 4 Určitý integrál 5 Užití integračního počtu 5. 1 Obsah rovinného útvaru 5. 2 Další příklady využití

1 Neurčitý integrál Mějme dány funkce F, f definované na otevřeném intervalu J. Funkce F se nazývá primitivní k funkci f na intervalu J, jestliže pro každé x є J platí: Množinu všech primitivních funkcí k dané funkci f nazýváme neurčitým integrálem funkce f a zapisujeme: přičemž Integrační znak Integrační proměnná Integrační konstanta Integrovaná funkce Výpočet neurčitého integrálu = integrování funkce f

2 Geometrická interpretace Známe-li graf jedné primitivní funkce F k funkci f na intervalu J, pak grafy všech primitivních funkcí k funkci f v intervalu J dostaneme posunutím grafu funkce F ve směru osy y. Např.: Na obrázku jsou uvedeny grafy některých primitivních funkcí k funkci f(x) = 2x. Všechny tyto primitivní funkce k funkci f(x) lze vyjádřit ve tvaru F(x) = x2 + C, kde C є R.

3 Základní vzorce

Existují-li v otevřeném intervalu J primitivní funkce k funkcím f(x), g(x) a jsou-li c1, c2 libovolné konstanty, pak platí následující vztahy:

4 Určitý integrál Nechť F je primitivní funkce k funkci f v intervalu I. Rozdíl F(b) – F(a) funkčních hodnot funkce F v libovolných bodech a, b tohoto intervalu se nazývá určitý integrál funkce f v mezích od a do b a značí se: Horní mez Dolní mez Při výpočtu integrálu zpravidla využíváme tento způsob zápisu:

5 Užití integračního počtu 5. 1 Obsah rovinného útvaru a) Obsah křivočarého lichoběžníku: b) Obsah obrazce ohraničeného grafy spojitých funkcí f(x) a g(x):

5 Užití integračního počtu 5. 2 Další příklady využití Objem rotačního tělesa Obsah pláště rotačního tělesa Fyzikální aplikace (dráha přímočarého pohybu, práce)

Literatura Kaňka M. a kol. Učebnice matematiky pro ekonomické fakulty. Praha: Victoria Pubishing, 1996. Delventhal, K., M., Kissner, A., Kulick, M. Kompendium matematiky. Praha: Euromedia Group k. s., 2003. Hrubý, D., Kubát, J. Matematika pro gymnázia – Diferenciální a integrální počet. Praha: Prometheus, 1997. Polák, J. Přehled středoškolské matematiky. Praha: Prometheus, 1998. http://www.studopory.vsb.cz/studijnimaterialy/MatematikaI/08_MI_KAP%202_1.pdf