Úloha č. 3 – Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová.

Slides:



Advertisements
Podobné prezentace
Zkoušení asfaltových směsí
Advertisements

Monitorování a analýzy Laboratorní cvičení
ATOMIZACE KAPALIN ULTRAZVUKEM A JEJÍ VYUŽITÍ PŘI SÍŤOVÁNÍ NANOVLÁKEN
Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5 Registrační číslo projektu:CZ.1.07/1.5.00/ Název projektu:Zvyšování.
Technické využití elektrolýzy.
VYUŽITÍ ODPRAŠKŮ PŘI VÝROBĚ a-SÁDRY Vysoké učení technické v Brně
Mechanické vlastnosti betonu a oceli
VY_32_INOVACE_02 - OCH - POJIVA
STUDIUM CHOVÁNÍ ESTERŮ KYSELINY KŘEMIČITÉ V ZÁSADITÉM PROSTŘEDÍ
Použitelnost Obvyklé mezní stavy použitelnosti betonových konstrukcí podle EC2: ·      mezní stav omezení napětí, ·      mezní stav trhlin, ·      mezní.
SOLI RZ
PEDOSFÉRA PŮDA NA ZEMI.
Redoxní děje = oxidačně redukční
Soli Při vyslovení slova sůl se každému z nás vybaví kuchyňská sůl - chlorid sodný NaCl. V chemii jsou však soli velkou skupinou látek a chlorid sodný.
CHEMICKÉ VLASTNOSTI NEROSTŮ
Soli Soli jsou iontové sloučeniny vzniklé neutralizační reakcí.
Složení roztoků Chemické výpočty
odměrná analýza – volumetrie
SOLI Chemie 9. ročník VY_32_INOVACE_07.3/20
Autoři: Ing. Dominik Gazdič Prof. Ing. Marcela Fridrichová, CSc.
Chemické výpočty III.
Fixace těžkých kovů v geopolymerních materiálech
Potenciometrie, konduktometrie, elektrogravimetrie, coulometrie
FMVD I - cvičení č.8 Sesychání dřeva.
Jak specifikovat beton a další produkty
VY_32_INOVACE_CHK4_5860 ŠAL Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Rozvoj.
Chemické výpočty II Vladimíra Kvasnicová.
Chemické výpočty II.
1) Napište chemické názvy sloučenin nebo iontů:
Standardy pro vrstvy konstrukcí vozovek Ing. Stanislav Smiřinský
Dita Matesová, David Lehký, Zbyněk Keršner
Návrh složení cementového betonu.
Naše půda ZŠ Sokolovská 1 Svitavy.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum: duben 2012 Předmět: Zkoušení stavebních.
Chemické reakce a výpočty Přírodovědný seminář – chemie 9. ročník ZŠ Benešov,Jiráskova 888 Ing. Bc. Jitka Moosová.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum: duben 2012 Předmět: Zkoušení stavebních.
Fyzikálně chemické analýza A. Dufka  Chemická analýza  Diferenční termická analýza (DTA)  Stanovení pH betonu ve výluhu  Rentgenová difrakční analýza.
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu:CZ.1.07/1.5.00/ – Investice do vzdělání nesou nejvyšší.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum: duben 2012 Předmět: Zkoušení stavebních.
Číslo projektuCZ.1.07/1.5.00/ Číslo materiáluVY_III/2_INOVACE_04-02 Název školy Střední průmyslová škola stavební, Resslova 2, České Budějovice.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum:červen 2012 Předmět: Zkoušení stavebních.
Rozlišování látek podle vlastností Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno.
Žákovský pokus Hydrolýza solí a stanovení pH Ing. Lenka Molčanová.
Úloha č. 3 – Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu CJ07 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE ZEYEROVA 3354, KROMĚŘÍŽ projekt v rámci vzdělávacího programu VZDĚLÁNÍ PRO KONKURENCESCHOPNOST.
Úloha č. 1 - Degradace kyselinami – vliv cementového pojiva CJ07 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová
Organická hmota v půdě Soubor všech odumřelých organických látek rostlinného i živočišného původu Odumřelá organická hmota v různém stupni rozkladu a resyntézy,
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum:červen 2012 Předmět: Zkoušení stavebních.
Úloha č. 5 - Koroze ocelových prvků – Zkouška solnou mlhou dle ČSN EN ISO 922 CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová 2017.
Úloha č. 1 - Degradace kyselinami – vliv cementového pojiva
VY_32_INOVACE_615 Název školy příspěvková organizace Autor
Výukový materiál zpracován v rámci projektu
Neutralizace Vznik solí
(podle stupně přeměny)
Miroslav Fér Stanovení obsahu humusu Miroslav Fér
Salinita (zasolení) půdy
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633
výpočet pH kyselin a zásad
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Tomáš.
Název školy Základní škola Kolín V., Mnichovická 62 Autor
Chemické sloučeniny Autor: Mgr. Iva Hirschová
Měření pH VY_32_INOVACE_29_591
odměrná analýza – volumetrie
Jak vznikají soli Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Úloha č. 3 – Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová.
Vážková analýza - gravimetrie
Agrochemie – 3. cvičení.
Agrochemie – 7. cvičení.
Úloha č. 3 – Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová.
Odměrná analýza.
Transkript prezentace:

Úloha č. 3 – Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová 2017

Cíl cvičení Cílem cvičení je odzkoušet vliv nátěrových hmot jako ochranné vrstvy na betonech zvyšující trvanlivost maltových hmot v různých degradačních prostředích. Těmito budou roztoky solí a organických kyselin.

Koroze II. typu Reakce složek cementu s chemickými látkami za vzniku rozpustných sloučenin. a) kyselinová koroze Je reakce kyseliny s Ca(OH)2 a s C-S-H gelem, dochází ke vzniku rozpustných vápenatých solí dle rovnice níže. Tyto bývají způsobeny průmyslovými vodami, kyselými huminové půdy, mikroorganismy a CO2. Ca(OH)2 + 2 H+  Ca2+ + H2O b) alkalická koroze NaOH + Si(nebo Al)  Na2SiO4 (popř. Na3AlO3) c) koroze hořečnatými solemi Mg2+ + Ca(OH)2  Mg(OH)2 + Ca2+ (vyplavení Ca2+)

Koroze III. typu V prostředí síranových iontů (tzn. je-li přítomna H2SO4 či rozpustné sírany) dochází ke vzniku nerozpustných sloučenin o větších objemech v pórech cementu. Tyto se hromadí v pórech betonu a vznikají velké krystalizační tlaky a v betonu vznik prasklin, porušení struktury, celkový rozpad betonu. Typický příklad – sádrovcová koroze. Sádrovcová koroze Ca(OH)2 + Na2SO4 + 2H2O → Ca2SO4∙2H2O + 2NaOH 3CaO∙Al2O3∙H2O + 3Ca2SO4∙2H2O + 20H2O → 3C3A∙3Ca2SO4∙32H2O zásadité hlinitany + sádrovec → Etringit (objem zvětší se až 11 x)

Ochrana proti korozi betonu Primární - složení (změna receptury), - struktura před zhotovením konstrukce, - v průběhu jejího zhotovení. Sekundární Spočívá v omezení nebo vyloučení působení agresivního prostředí na betonovou konstrukci po jejím zhotovení. Použití polymerních nátěrů – předmětem našeho cvičení. Navrhuje se: podle stupně agresivity prostředí, volbou způsobu jejich provedení podle rozhodujících vlastností ochranných prostředků (chemická odolnost, propustnost, přídržnost k chráněnému povrchu betonu, odolnost proti vzniku trhlin, pevnost).

Referenční, vzorek uložen v laboratorních podmínkách Úloha č. 3 - Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu Experimentální část Vyrobte 2 sady zkušebních těles o rozměrech 20x20x100 mm, vše ze stejné standardní směsi – s použitím cementu CEM I 42,5 R, obsahem písku (0 – 2 mm) v poměru 3 : 1 na cement a vodní součinitel 0,5. Cekem ve skupině 6 trámečků (2 budou uloženy do každého z roztoku solí či kyseliny (2+2) a poslední dva budou referenční).   Prostředí 1 Prostředí 2 Prostředí 3 Skupina A 5 % CaCl2 5 % Na2SO4 Referenční, vzorek uložen v laboratorních podmínkách (za sucha) Skupina B 5 % Ca(NO3)2 5 % K2SO4 Skupina C 5 % KNO3 5 % (NH4)2SO4 Skupina D 5 % kys. octová 10 % Na2SO4 Skupina E 5 % kys. šťavelová 5 % NH4NO3

Úloha č. 3 - Účinnost nátěrových hmot a jejich využití jako ochrana proti degradaci betonu Experimentální část Následující den ODFORMOVAT a uložit trámečky do stand. lab. prostředí při teplotě (20±2) °C. Po 7 dnech polovinu vzorků opatřete ochranným nátěrem na bázi polymerní disperze a ponechte min. 1 den vyschnout. Poté připravené vzorky vložte do roztoků solí a organických kyselin. Ponechte 14 dní exponovat. Po této době vzorky vyjměte, opláchněte vodou, vizuálně zhodnoťte a stanovte změnu hmotnosti, objemovou hmotnost, pevnost v tahu ohybem, pevnost v tlaku a porovnejte v protokolu graficky s referenčním vzorkem. V závěru popište procesy, ke kterým ve struktuře hmoty došlo.

Úloha č. 4 – Celkové množství chloridů v cementové pastě podle normy EN 196-2 CJ007 – Trvanlivost stavebních materiálů Ing. Magdaléna Kociánová 2017

Cíl cvičení Cílem cvičení je představení měření celkového obsahu chloridů v cementové pastě, dle normy EN 196-2.

Chloridy v cementové pastě Chloridové ionty v betonu - kontaminanty z použitých vstupních surovin, příp. z okolního prostředí. Značně ovlivňují ocelovou výztuž v ŽB k-cích. Při hydrataci za zvýšené zásaditosti (pH~13) dochází ke vzniku pórů ve struktuře hmoty. V takovýchto podmínkách je pasivní film oxidu γFe2O3 aktivován přes povrch ocelových výztuží, jež jsou do betonu vloženy. Beton – porézní materiál → ocelová výztuž nemůže být v čase stabilní. Nejdůležitější agresivní prostředky – oxid uhličitý a chloridové ionty (kritická koncentrace). Ocelový povrch prutu – anoda, pasivní povrch – katoda. Friedlova sůl (3CaO∙Al2O3∙CaCl2∙10H2O).

Úloha č. 4 - Celkové množství chloridů v cementové pastě podle normy EN 196-2 Experimentální část Vyrobíte jedno těleso o rozměrech (40 x 40 x 160 mm). Použitý cement je CEM II/B-M 32,5 R, v/c = 0,5. Následující den ODFORMOVAT a uložit na 2 dny do vodní lázně. Poté těleso vytáhnete a necháte uložené ve stand. lab. prost. při teplotě (20 ± 2) °C. Následující cvičení natřete celý povrch vzorku, kromě jedné strany, ochranným epoxidovým nátěrem. Poté uložíte vzorek do roztoku chloridových iontů o koncentraci 3,5 % NaCl. Po sedmi dnech na straně vzorku bez nátěru vyvrtejte 6 otvorů o hloubce 5 a 10 mm. Získaný cementový prach ze všech otvorů smíchejte (prach bude sloužit k následující analýze). Stanovíte množství chloridových iontů metodou nepřímé titrace. Stanovíte profil chloridových iontů a vypočtete jejich difúzní koeficient.

Úloha č. 4 - Celkové množství chloridů v cementové pastě podle normy EN 196-2 Experimentální část - Titrace Za míchání a zahřívání plně rozpusťte odvážené množství (cca 5g) z každého práškového vzorku cementu v připraveném roztoku 50 ml destil. vody a 50 ml zředěné kys. dusičné (1:2 - HNO3:H2O). Po dosažení teploty varu pokračujte s varem po 1 minutu a poté přidejte 10 ml 0,1-M AgNO3. Pokračujte s varem po 1 minutu, poté roztok zfiltrujte. K roztoku přidávejte zředěnou kys. dusičnou (1:100 - HNO3:H2O), až do celkového objemu 200 ml. Roztok ochlaďte na cca 25 °C a přidejte 5 ml roztoku indikátoru NH4Fe(SO4)2∙12H2O. Pomocí titrace za intenzivního míchání s roztokem 0,1-M NH4SCN stanovte celkový obsah chloridů v centovém prášku. Konec titrace je indikován přechodem barvy na tmavě červenou.

Úloha č. 4 - Celkové množství chloridů v cementové pastě podle normy EN 196-2 Experimentální část - Titrace Vypočtěte celkový obsahu chloridů (jako podíl hmotnosti cementu) přes rovnici: kde: ΔV = VAgNO3 - VNH4SCN MBCl = 35,5 g/mol m: hmota vzorku prášku s každé hloubky [g]

Výpočet difuzního koeficientu chloridů Úloha č. 4 - Celkové množství chloridů v cementové pastě podle normy EN 196-2 Experimentální část – Výpočet difuzního koeficientu chloridů Výpočet difuzního koeficientu chloridů Šíření chloridových iontů je určené podle druhého Fickova zákonu, za předpokladu, je-li uvažován fenomenologický přístup.

Úloha č. 4 - Celkové množství chloridů v cementové pastě podle normy EN 196-2 Experimentální část Závěr: Své výsledky vyplňte do následující tabulky Tab. 1 a zodpovězte na otázku: „Je druhý Fickův zákon způsobilý s výsledky vašich koncentrací chloridů a proč?“