V této práci jsme se zaměřili na použití buzoly a azimutu v praxi. Ověřili jsme si také znalost trigonometrie, kterou jsme probírali v druhém ročníku.

Slides:



Advertisements
Podobné prezentace
Měření na mapách.
Advertisements

GYMNÁZIUM, VLAŠIM, TYLOVA 271
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání • Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Početní úlohy Zeměpisný seminář.
POZNÁMKY ve formátu PDF
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Cvičení 2 Proměnné(jednoduché a složené) a konstanty První program Zápis výrazů.
Člověk a příroda Zeměpis Praktický zeměpis Azimutové soutěže ve třídě VY_32_INOVACE_05 Sada 6 Základní škola T. G. Masaryka, Český Krumlov, T. G. Masaryka.
Užití podobnosti v praxi
Kruh, kružnice – povrch, objem, výpočty
Práce s buzolou v terénu VY_32_INOVACE_03 Sada 6
VY_42_INOVACE_396_MĚŘÍTKA MAP A PLÁNKŮ
VY_32_INOVACE_04_PVP_215_Kli
Mapa a buzola.
I/2: čtenářská a informační gramotnost - inovace
Komplexní čísla goniometrický tvar Vypracoval: Mgr. Lukáš Bičík
Thaletova věta 8. ročník Autorem materiálu je Mgr. Jana Čulíková
Téma: Fyzikální veličiny – délka
20..
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Planparalelní destička
Tvorba spojnicových grafů v aplikaci MS Excel
Kartografie a topografie
Škola:Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_MATEMATIKA1_ 20 Tematická.
Vypracovaly: Lucie Hotařová a Michaela Brabencová
Přímá úměrnost Slovní úlohy.
ZÁKLADY NAVIGACE.
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
V PRAVOÚHLÉM TROJÚHELNÍKU
Tomáš Markovič, Jan Hirschner. Oči fyzika  “ Vidí to, co je lidským očím odepřeno “ Teplota, osvětlení, zvuková intenzita Vzdálenost, rychlost Zrychlení.
Základní škola a mateřská škola Bzenec Číslo projektu: CZ.1.07/1.4.00/ Číslo a název šablony klíčové aktivity: III/2: využívání ICT – inovace Vypracoval/a:
Opakované měření délky Autor: Mgr. Eliška Vokáčová Gymnázium K. V. Raise, Hlinsko, Adámkova , prosinec.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Výukové materiály-CISCO
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
SINOVÁ VĚTA Milan Hanuš;
19..
Trigonometrie ve slovních úlohách
Karas Jan Šeďa Jakub 2.B Gymnázium Jakuba Škody, Přerov
S buzolou po Česku Autoři: Ondřej Bortník Tomáš Chytil Josef Dostál Lukáš Caletka.
K ARTOGRAFIE – MĚŘÍTKO MAPY Autor: Hana Brýdlová.
Gymnázium Jakuba Škody Septima A 2011/2012.  Cílem tohoto matematicko-fyzikálního projektu byla ukázka využití vektorů v praxi.  Základním úkolem projektu.
Goniometrické funkce Využití goniometrických funkcí Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického.
JEHLAN 6 - Výpočet povrchu příklady s goniometrickou funkcí NÁZEV ŠKOLY2. ZŠ J. A. Komenského Milevsko, J. A. Komenského 1023, okres Písek ČÍSLO PROJEKTUCZ.1.07/1.4.00/
Matematika pro 9. ročník Jehlany – příklady – 1. Jehlan Vypočítejte objem pravidelného čtyřbokého jehlanu na obrázku (vyjádřete pomocí odmocnin).
Trigonometrie v praxi, aneb Obrázek přejat z: outdoors.com.
Klepnutím lze upravit styl předlohy podnadpisů
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.4.00/ AUTOR:Mgr. Vladimír.
Trigonometrie v praxi Měření vzdáleností v terénu.
PYTHAGOROVA VĚTA Pythagorova Pythagorova věta a věta k ní obrácená.
Matematika pro 9. ročník Jehlany – příklady – 2. Jehlan Vypočítejte objem pravidelného trojbokého jehlanu vysokého 5 cm, s podstavnou hranou 6 cm (vyjádřete.
Trigonometrie v praxi. 1) Vánoční strom Naším prvním úkolem bylo, zjistit výšku vánočního stromu v Kozlovicích před místním pivovarem.
Napříč Evropou Matematicko- geografický projekt. Zadání úkolů 1. Podle daných indícií se pokuste zjistit a určit město, ve kterém se nacházíte 1. Podle.
VY_12_INOVACE_Pel_III_21 Objem jehlanu Název projektu: OP VK Registrační číslo: CZ.1.07/1.4.00/ OP Vzdělání pro konkurenceschopnost.
PODOBNOST V PRAXI Jirka se rozhodl, že změří výšku borovice, která roste naproti jejich domu. Zabodl do země tyč vysokou 3 metry a zjistil, že vrhá stín.
ZÁKLADNÍ ŠKOLA SADSKÁ Mgr. Aleš Čech Zeměpis 7. ročník
Využití goniometrických funkcí
B.Kahánková, L.Kyselá, K.Kulišťáková, N.Smetanová
- Výpočet povrchu příklady
Výukový materiál zpracován v rámci projektu
Výukový materiál zpracován v rámci projektu
Odchylka mezi ekliptikou a rovinou Galaxie
Popis tělesa a výpočet povrchu
Klézl , Gremlica , Běhal , Simon
Jak udělat skákajícího panáka ještě přesněji
Kružnice Vypracoval: Mgr. Lukáš Bičík
Trigonometrie v praxi MFF UK Praha, 22. září 2012
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Složitější příklady na zákon lomu
Název školy: ZŠ Bor, okres Tachov, příspěvková organizace
Transkript prezentace:

V této práci jsme se zaměřili na použití buzoly a azimutu v praxi. Ověřili jsme si také znalost trigonometrie, kterou jsme probírali v druhém ročníku. Na ukázku jsme vypracovali tyto příklady: 1. měření výšky GJŠ 2. vzdálenost GJŠ od jídelny (vzdušnou čarou)

1.Měření výšky GJŠ 1. Úhloměrem jsme si změřili úhel pohledu na střechu gymnázia ze vzdálenosti 7m od budovy školy. Došli jsme k výsledku 65 °. Změřené údaje jsme zapsali do sinové věty:

2.Vzdálenost GJŠ od jídelny (vzdušnou čarou) Změřili jsme si vzdálenost GJŠ od značky, která svírá pravý úhel mezi školou a jídelnou. Buzolou jsme si změřili azimut nejprve ke jmenované značce a potom k jídelně, azimuty jsme odečetli a získali jsme výsledný úhel 52 °. Po dopočítání všech úhlů jsme použili na výpočet úhel 38°, který je svírán u jídelny mezi naší školou a dopr. značkou.

Na projektu pracovali : Michaela Lenochová Martin Chalupa Filip Váhala Jan Kučera