Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Křemenné optické mikrorezonátory

Podobné prezentace


Prezentace na téma: "Křemenné optické mikrorezonátory"— Transkript prezentace:

1 Křemenné optické mikrorezonátory
M. JELÍNEK 1, F. TODOROV 2, V. MATĚJEC 2, M. CHOMÁT 2, V. KUBEČEK 1, D. BERKOVÁ 2 1 Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze, Břehová 7, Praha 1 2 Ústav fotoniky a elektroniky AV ČR, v.v.i., Chaberská 57, Praha 8 Optické komunikace , Praha

2 Types of WGM microresonators
Microfiber Diameter 5 μm Highest Q achieved with microsphere resonators (diameters μm)

3 WGM Properties Evanescent wave of WGMs penetrates into the microresonator surrounding on distances d nm and provide us with a tool for detecting RI changes in this area

4 WGM Sensors - Principle
Refractive-index changes in the resonator surrounding (surface) cause a shift of resonance peaks and their broadening (decrease of Q)

5 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

6 Úvod Mikrorezonátor: mikrokulička z dielektrického materiálu o průměru ~10 až ~100 mm Světlo s rezonančními frekvencemi se šíří ve formě tzv. „módů šeptající galerie – whispering gallery modes“ Pole módů je silně lokalizováno do oblasti stěny mikrorezonátoru Vzhledem k minimálním ztrátám při odrazu světla a potenciálně nízké absorpci materiálu lze dosáhnout mimořádně vysokých hodnot činitelů jakosti Q

7 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

8 Mikrolasery

9 Zúžení a stabilizace spektrální čáry

10 Senzory s vysokou detekční citlivostí
Biologické a chemické senzory

11 Spektrální vlastnosti
Rezonanční spektrum mikrorezonátoru se skládá ze skupin pásů TE(TM)lmq módů, které jsou od sebe vzdáleny o tzv. velký volný spektrální rozsah DlFSR: Křemenný mikrorezonátor nr=1,457, poloměr r=165 mm, vlnová délka l=1565 nm: DlFSR = 1,6 nm, což odpovídá DnFSR = 198 GHz l: vlnová délka nr: index lomu mikrorezonátoru r: poloměr mikrorezonátoru

12 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

13 Příprava křemenných mikrorezonátorů
Příprava kulových mikrorezonátorů zahřátím konce vlákna plamenem kyslíko-vodíkového hořáku Byly připraveny mikrorezonátory s průměrem 200 až 400 mm

14 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

15 Metody charakterizace
Excitace WGM módů prostřednictvím evanescentního pole Metody charakterizace mikrorezonátorů: Objemový hranol Vláknový hranol Vláknový taper

16 Excitace objemovým hranolem
LD: přeladitelný laserový zdroj L1, L2: sférické čočky (f=25 mm) P: hranol SF5 PD1: fotodioda + osciloskop

17 Excitace objemovým hranolem
LD: přeladitelný laserový zdroj L1, L2: sférické čočky (f=25 mm) P: hranol SF5 PD1: fotodioda + osciloskop

18 Excitace vláknovým hranolem
LD: přeladitelný laserový zdroj PD1: fotodioda + osciloskop

19 Excitace vláknovým taperem
LD: přeladitelný laserový zdroj PD2: fotodioda + osciloskop

20 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

21 Excitační zdroje Telekomunikační laserová dioda 1565 nm
Šířka emitované spektrální čáry < 1 MHz Ladění vlnové délky Dl = 1 nm procházejícím proudem Laserový systém Agilent 81642B Šířka emitované spektrální čáry < 100 kHz Ladění vlnové délky Dl > 10 nm

22 Excitace objemovým hranolem
Přeladitelná laserová dioda

23 Excitace vláknovým hranolem
Přeladitelná laserová dioda

24 Excitace vláknovým hranolem
Laserový systém Agilent

25 Excitace vláknovým hranolem
Šířka vybraného dipu: 0,86 pm (FWHM) <=> 106 MHz Činiteli jakosti: Q=1,8×106

26 Excitace vláknovým taperem
Přeladitelná laserová dioda

27 Excitace taperem – vyhodnocení
Šířka vybraného dipu: 1,35 pm (FWHM) <=> 165 MHz Činiteli jakosti: Q=1,16×106

28 Obsah Úvod Motivace Příprava křemenných mikrorezonátorů
Metody charakterizace mikrorezonátorů Experimentálně naměřená spektra Závěr

29 Závěr Připraveny kulové mikrorezonátory s průměrem 200 až 400 mm
Vyzkoušena tři uspořádání excitace WGM módů: objemový hranol, vláknový hranol a vláknový taper Ostrá rezonanční minima dosažena pomocí vláknového hranolu i vláknového taperu - činitel jakosti v řádu 106 Další postup: vývoj chemického senzoru

30 Optical Fibre Lasers And Their Potential Sensor Applications
Tong Sun1, Rosa Ana Pérez-Herrera2, Shuying Chen1, Atasi Pal3, Manuel López-Amo2, Ranjan Sen3, K T V Grattan1, 1City University London, UK; 2Universidad Pública de Navarra, Spain; 3Central Glass and Ceramic Research Institute (CGCRI), India

31 Microsphere laser: background
Compact and low-threshold infrared laser source for potential multi-parameter gas/vapour detection (~2μm) Exploration of newly designed and fabricated Tm/Yb co-doped single mode silica fibres Pump Light Source Microsphere Laser cavity Set-up for Gas Absorption Measurements

32 Whispering gallery modes and microsphere
Optical microcavities confine and store optical energy to small volumes by resonant recirculation Whispering gallery modes (WGMs) orbits near the spherical surface, where long confinement times effectively wrap a large interaction distance into tiny volume. Microsphere as a micro-resonant cavity High Q factor Low threshold Narrow line-width

33 Microsphere coupling schemes
Optical coupling is accomplished by phase matching the microsphere mode to the fundamental fiber mode microsphere Angled polished fibre microsphere Tapered Fibre P. Féron, Quaderni Di Ottica E Fotonica, vol. 8, p. 117, 2002; Knight et al, Optics Letters, Vol.22, p1129, 1997

34 The schematic diagram of the CO2 laser tapering system
Fibre taper fabrication system Fibre Pulling Motorised Stages Motion Controllers Fibre Clampers Laser Scan System Laser focus lens Galvanometer Mirror Laser beam LabVIEW The schematic diagram of the CO2 laser tapering system

35 Fibre taper fabrication system
Focus lens Galvanometer mirror Fibre clamper Beam block CCD camera The CO2 laser-based fibre taper fabrication system

36 Low loss fibre tapers created
Image of a ~2μm taper under microscope ASE broad band light source spectrum before and after the tapering the SMF28

37 Microsphere fabrication
Laser gain material: Tm/Yb co-doped single mode silica fibre: Tm concentration: 1110ppm; Yb concentration: 1060ppm Fibre core diameter: 9m, NA: 0.15 The fibre cladding was removed by chemical etching at Acreo, Sweden Microsphere fabrication: melting the end of an etched fibre using the CO2 laser and the microsphere will be formed at the end of the fibre due to the surface tension

38 X-Y-Z Translation Stages Microsphere-tapered fibre coupling point
Microsphere laser cavity Fibre Clamps Microscope Objective X-Y-Z Translation Stages Microsphere-tapered fibre coupling point Taper Coupling point Microsphere Coupling between the fibre taper and the microsphere

39 Microsphere laser system
Tunable laser source Monochromator Microsphere laser cavity Taper diameter: ~2μm Sphere diameter:~75μm The microsphere is in contact with the taper to avoid the disturbance due to environmental vibrations A tunable laser source was used as the pumping source A Monochrometer was used to scan cross the emission range to detect the laser emission signals

40 Experiment results Tm/Yb sphere laser spectrum pumped by 2 mW power at a wavelength of 1623nm showing signal intensity in arbitrary units (a.u.) versus wavelength (nanometres)

41 Experiment results obtained
Tm/Yb sphere laser spectrum pumped by 15 mW power at a wavelength of 1623nm showing signal intensity in arbitrary units (a.u.) versus wavelength (nanometres)

42 Experiment results Laser output peak intensity at 1961 nm, as a function of the pump power at 1623nm


Stáhnout ppt "Křemenné optické mikrorezonátory"

Podobné prezentace


Reklamy Google