Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0208 Šablona:III/2č. materiálu:VY_32_INOVACE_116.

Podobné prezentace


Prezentace na téma: "Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0208 Šablona:III/2č. materiálu:VY_32_INOVACE_116."— Transkript prezentace:

1 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_116 Jméno autora:Mgr. Iva Vrbová Třída/ročník:3.E/ třetí ročník Datum vytvoření:

2 Vzdělávací oblast:Člověk a logické myšlení Tematická oblast:Posloupnosti Předmět:Matematika Název učebního materiálu:Geometrická posloupnost – příklady II. Výstižný popis způsobu využití, případně metodické pokyny: Prezentace obsahuje řešené příklady na procvičení vztahu pro součet několika prvních členů GP a příklady pro samostatné řešení (u složitějších je přiložen návod) Klíčová slova:Geometrická posloupnost; Součet členů GP Druh učebního materiálu:prezentace

3 Procvičení vzorce pro součet GP:

4 Sečtěte daný počet prvních členů GP hledáme součet 10 členů 

5 nejprve určete GP:

6

7 GP1: a 1 = 1/32, q = 2 GP2: a 1 / = –1/32, q / = –2

8

9 Příklady pro samostatné řešení  Geometrická posloupnost

10 Součet prvních jedenácti členů GP se rovná 683. Vypočítejte první a poslední člen, když q =1/2. a 1 = 1024; a 11 = 1 Vyroste-li z jednoho zrna za rok průměrně 16 zrn, jaké množství zrn vyroste z jednoho zrna za 10 let? s 10 je přibližně 7, zrn

11 Návod: Součet sudých členů a lichých členů musí dát dohromady součet všech členů dané posloupnosti. GP o šesti členech má součet všech členů roven 63 a součet sudých členů je 42. Určete tuto GP. a 1 = 1; q = 2 Návod: Součet sudých členů a lichých členů musí dát dohromady součet všech členů dané posloupnosti. V sedmičlenné GP je součet prvních tří členů 26 a posledních tří Určete tuto GP. GP1: a 1 = 2; q = 3 GP 2: a 1 = 26/7; q = –3

12 Mezi kořeny rovnice x 2 – 325x = 0 vložte 5 čísel tak, aby vznikla GP. Mezi kořeny rovnice x 2 – 136x = 0 vložte 3 čísla tak, aby vznikla GP. hledaná pětice: {10; 20; 40; 80; 160} hledaná trojice: {16; 32; 64} Mezi čísla 4 a 108 vložte 2 čísla tak, aby s danými čísly tvořila GP. hledaná dvojice: {12; 36}

13 Určete součet prvních pěti členů GP, jestliže krajní sčítance tvoří čísla 6 a Určete součet prvních čtyř členů GP, jestliže krajní sčítance tvoří čísla 8 a Mezi čísla 2 a vložte deset čísel tak, aby s danými čísly tvořila GP. Určete součet vložených členů

14 Mezi čísla 5 a 640 vložte tolik čísel, aby s danými čísly tvořila GP a součet vložených členů byl 630. n = 8: {5; 10; 20; 40; 80; 160; 320; 640} Návod: Opět použijte: q n–1 = q n. q –1, ale zároveň si uvědomte, že součet všech čísel získáme sečtením vložených a krajních členů dohromady, tzn. s n = a 1 + a n. Kvádr, jehož hrany tvoří GP, má povrch 78 cm 2 a součet hran, které procházejí jedním vrcholem, je 13 cm. Určete objem kvádru. V = 27 cm 3 Návod: V = abc = a 1. a 2. a 3 S = 2ab + 2bc + 2ac = 2a 1. a 2 + 2a 2. a 3 + 2a 1. a 3 Nezapomeňte zafixovat délku prostřední hrany, protože pak a 1 = a 2 /q a a 3 = a 2. q.

15 Součet prvních n členů GP je 6 141, první člen je 3 a poslední Vypočítejte počet členů součtu a kvocient dané posloupnosti. q = 2; n = 11 Návod: Použijte vzorec pro součet, pro n-tý člen a nezapomeňte, že platí i „staré“ vzorce pro mocniny: q n–1 = q n. q –1. Součet prvních n členů GP je , poslední člen je a kvocient 3. Vypočítejte počet členů součtu a první člen dané posloupnosti. a 1 = 5, n = 8

16 Která GP má tu vlastnost, že součet prvních osmi členů je 82 krát větší než součet prvních čtyř členů? Úloha má tři řešení GP1: q = + 3, a 1  R – {0} GP2: q = – 3, a 1  R – {0} GP3: q = – 1, a 1  R – {0} Návod: s 8 = 82. s 4 a q  1 (delší vzorec pro součet), protože pro q = 1 by platilo s 8 = 2. s 4. Vzniklou rovnici řešte pomocí substituce: q 4 = x. Která GP má tu vlastnost, že součet prvních osmi členů je 17 krát větší než součet prvních čtyř členů? GP1: q = + 2, a 1  R – {0} GP2: q = – 2, a 1  R – {0} GP3: q = – 1, a 1  R – {0}

17 Použitá literatura: ODVÁRKO, O. Matematika pro střední odborné školy a studijní obory středních odborných učilišť, Posloupnosti a finanční matematika 1. vyd. Praha : Prometheus, ISBN Kapitola 2, s. 31–40 JIRÁSEK, F.; BRANIŠ, K.; HORÁK, S.; VACEK, M. Sbírka úloh z matematiky pro střední odborné školy a studijní obory středních odborných učilišť 2. část. 3. vyd. Praha : Prometheus, ISBN Kapitola 5, s. 138–147


Stáhnout ppt "Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0208 Šablona:III/2č. materiálu:VY_32_INOVACE_116."

Podobné prezentace


Reklamy Google