Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Didaktika matematiky – KAG/MDIM7
Mnohostěny
2
Rozcvička: Krychle má 9 různých rovin symetrie. Nakreslete je.
3
Řešení
4
Mnohostěn je část prostoru ohraničeného konečným počtem rovinných mnohoúhelníků.
5
Geometrický útvar nazveme konvexní,
právě když lze libovolné dva jeho body spojit úsečkou, jejíž každý bod náleží danému geometrickému útvaru.
6
Eulerova charakteristika mnohostěnu
Leonhard Euler je číslo E = s + v – h kde s je počet stěn, v počet vrcholů a h počet hran daného konvexního mnohostěnu.
7
Eulerova věta „ V každém konvexním mnohostěnu platí Eulerův vztah
s + v – h = 2 kde s je počet stěn, v počet vrcholů a h počet hran daného konvexního mnohostěnu.“
8
Platón, 427 – 347 př. n. l. Platónovým tělesem (pravidelným mnohostěnem, PT) nazveme konvexní mnohostěn ohraničený shodnými pravidelnými konvexními rovinnými mnohoúhelníky, přičemž z každého jeho vrcholu vychází týž počet hran.
10
Keplerův „Kosmický pohár“
- sféra Merkuru opsán osmistěn, který je vepsán do sféry Venuše sféře Venuše opsán dvacetistěn sféra Země dvanáctistěn sféra Marsu čtyřstěn sféra Jupitera krychle sféra Saturnu Johannes Kepler
11
Existuje právě pět Platónových těles
12
Princip duality PT
13
Deltatopy V definici PT vynecháme požadavek na stejnou valenci vrcholů (q) a „mnohoúhelníky“ nahradíme „trojúhelníky“. Existuje právě 8 deltatopů. Název deltatopu v h s q = 3 q = 4 q = 5 1. čtyřstěn 4 6 2. dvojitý čtyřstěn 5 9 2 3 3. osmistěn 12 8 4. dvojitý pětiboký jehlan 7 15 10 5. siamský dvanáctistěn 18 6. 21 14 7. 24 16 8. dvacetistěn 30 20
14
Archimédova tělesa Archimédes ze Syrakus 287 – 212 př. n. l. - lze vytvořit z PT odříznutím vrcholů nebo hran tak, aby vznikly pravidelné konvexní mnohoúhelníky.
15
Hvězdicovité pravidelné mnohostěny
V definici PT jsou vynechány požadavky konvexnosti.
16
Pravidelné antihranoly
mají dvě protilehlé stěny (podstavy) tvořené shodnými pravidelnými n–úhelníky a ostatní stěny jsou shodné rovnoramenné trojúhelníky. pravidelný šestiúhelníkový antihranol (regular hexagonal antiprisma)
17
Platónova tělesa v biosféře
Mřížovka červená Virus dětské obrny Radiolaria (mřížovci)
18
Mnohostěny v chemii
19
Poincarého zobecnění Eulerovy věty
Pro mnohostěny platí s + v - h = 2 - 2r, kde r je (topologický) rod plochy. Zjednodušeně lze říci, že hodnota rodu plochy je rovna počtu v ní existujících „průchodů“.
20
11 pravidelných mnohostěnů rodu 2
druh p g v s h 1. 3 7 12 28 42 Ikosaedr +2 tunely 2. 8 6 16 24 Oktaedr + 2 tunely 3. 4 5 10 20 Krychle + 2 tunely 4. 9 18 Tetraedr + 2 tun. 5. Krychle + 1 tunel 6. Otevřené pentagonální těleso, duální samo k sobě 7. duální k 5. 8. duální k 4. 9. duální k 3. 10. duální k 2. 11. duální k 1.
21
Mříže z pravidelných mnohostěnů rodu 2
22
Domácí úkol - rozmyslet
1. Najděte nekonvexní mnohostěn, který nesplňuje Eulerův vztah. 2.Najděte nekonvexní mnohostěn, který splňuje Eulerův vztah. 3.Je dán konvexní čtrnáctistěn s devíti vrcholy. Dokažte, že na něm existuje vrchol, ze kterého vychází aspoň 5 hran. 4.Určete počty rovin souměrnosti všech Platonových těles. 5.Na kolik částí se rozpadnou, provedeme-li všechny tyto řezy současně? 6.Kolik prvků mají grupy zákrytoých pohybů Platonových těles?
23
Literatura Březina, F. a kol.: Stereochemie a některé fyzikálně chemické metody studia anorganických látek. UP, Olomouc 1994. Huylebrouck, D.: Regular Polyhedral Lattices of Genus 2: 11 Platonic Equivalents? In: Bridges Conference Proceedings, Pécs 2010. Molnár, J., Kobza, J.:Extremálne a kombinatorické úlohy z geometrie. SPN, Bratislava 1991. Molnár, J., Kobza, J.: Extremálne a kombinatorické úlohy z geometrie. SPN, Bratislava 1991. Vacík, J.: Obecná chemie. SPN, Praha 1986. Vacík, J. a kol.: Přehled středoškolské chemie. SPN, Praha 1996. Zimák, J.: Mineralogie a petrografie. UP, Olomouc 1993
24
Domácí úkol č. 5 Vyrobte papírové modely vylosovaných archimedovských těles.
25
Děkujeme za pozornost
Podobné prezentace
© 2025 SlidePlayer.cz Inc.
All rights reserved.