Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilLukáš Kašpar
1
R OVNICE A NEROVNICE Soustava lineárních rovnic o více neznámých II. VY_32_INOVACE_M1r0114 Mgr. Jakub Němec
2
U ŽITÍ SČÍTACÍ METODY PŘI ŘEŠENÍ SOUSTAVY DVOU LINEÁRNÍCH ROVNIC sčítací metoda V minulé lekci jsme si představili dosazovací metodu pro řešení soustavy rovnic. Druhým způsobem, který lze využít je tzv. sčítací metoda. Její princip spočívá v „odečtení“ jedné neznámé z obou rovnic. Musíme ekvivalentními úpravami upravit rovnice tak, abychom získali u jedné neznámé opačné hodnoty koeficientů. Poté obě rovnice sečteme a získáme tak rovnici s jednou neznámou. soustava nemá řešení má soustava nekonečně mnoho řešení Podobně jako v případě řešení soustavy pomocí dosazovací metody mohou nastat tři situace – soustava nemá řešení, soustava má jedno řešení nebo má soustava nekonečně mnoho řešení. Těmto situacím se budeme věnovat v následujících cvičeních.
3
Řešte soustavu rovnic a ověřte kořeny zkouškou. Upravíme obě rovnice na co nejjednodušší tvar. V tomto příkladu vidíme, že po úpravě rovnic je koeficient u neznámé y opačný. Sečteme tedy obě rovnice, čímž eliminujeme y. Získáme tak jednoduchou lineární rovnici, čímž získáme kořen x. Neznámou y vypočteme dosazením x do libovolné rovnice soustavy. Zapíšeme množinu kořenů. Ověříme řešení zkouškou.
4
Řešte soustavu rovnic a ověřte kořeny zkouškou. Upravíme obě rovnice na co nejjednodušší tvar. Nyní se musíme rozhodnout, jak ekvivalentně upravit některou z rovnic tak, abychom součtem odstranili jednu z neznámých. V tomto případě budeme druhou rovnici násobit číslem -3, což povede k odstranění neznámé x. Po součtu rovnic vyřešíme lineární rovnici. Dopočteme neznámou x dosazením hodnoty y. Zapíšeme množinu kořenů. Zkouška je banální cvičení.
5
Řešte soustavu rovnic a ověřte kořeny zkouškou. Upravíme obě rovnice na co nejjednodušší tvar. Ekvivalentně upravíme jednu z rovnic tak, abychom odstranili jednu z neznámých. Obě rovnice jsou přesně opačné, což po součtu vede k výsledku, který značí nekonečně mnoho řešení. Je třeba vyjádřit jednu z neznámých pomocí druhé neznámé, jak jsme si vysvětlovali v minulé lekci. Zapíšeme množinu kořenů. Zkouška je snadným cvičením.
6
Řešte soustavu rovnic a ověřte kořeny zkouškou. Upravíme obě rovnice na co nejjednodušší tvar. Ekvivalentně upravíme jednu z rovnic tak, abychom odstranili jednu z neznámých. Po součtu rovnic zjistíme, že rovnice nemají žádný reálný kořen. Zkoušku tedy není třeba provést.
7
Řešte soustavu rovnic a ověřte kořeny zkouškou.. Ekvivalentně upravíme rovnice tak, abychom odstranili jednu z neznámých. Sečteme rovnice a získáme lineární rovnici, z níž určíme neznámou y. Dopočteme neznámou x dosazením do jedné z rovnic soustavy. Zapíšeme množinu kořenů. Zkouška je lehkým cvičením.
8
Ú KOL ZÁVĚREM
9
Z DROJE Literatura: CHARVÁT, Jura; ZHOUF, Jaroslav; BOČEK, Leo. Matematika pro gymnázia: Rovnice a nerovnice. 4. vydání. Praha: Prometheus, 2010, 223 s. ISBN 987-80-7196-362-2.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.